What post processing technique would be used to re register an image to correct for patient motion?

Pixel shift or reregistration is a post-processing technique used to improve misregistration artifact in digital subtraction angiography, where two images to be subtracted are spatially realigned with respect to one another, by shifting pixels vertically, horizontally or obliquely. 

Pixel shifting may be performed manually or through the use of automated techniques.

In digital subtraction angiography, misregistration is the most common cause of image degradation, where patient motion results in a spatial misalignment between the mask and runoff images. 

  • 1. Penelope Allisy-Roberts, Jerry R. Williams. Farr's Physics for Medical Imaging. (2020) ISBN: 9780702028441
  • 2 .Christopher M. Kramer. Imaging in Peripheral Arterial Disease. (2019) ISBN: 9783030245962

Remasking is a post-processing technique used to improve misregistration artifact in digital subtraction angiography, where a frame taken after patient motion is selected as the new mask image for subtraction.

In digital subtraction angiography, misregistration (improper image registration) is the most common cause of image degradation, where patient motion results in a spatial misalignment between the mask and runoff images.

  • 1. Penelope Allisy-Roberts, Jerry R. Williams. Farr's Physics for Medical Imaging. (2020) ISBN: 9780702028441

1. Keall P. 4-dimensional computed tomography imaging and treatment planning. Semin Radiat Oncol 2004; 14: 81–90. doi: 10.1053/j.semradonc.2003.10.006 [PubMed] [CrossRef] [Google Scholar]

2. Rietzel E, Chen GTY, Choi NC, Willet CG, et al.. Four-dimensional image-based treatment planning: Target volume segmentation and dose calculation in the presence of respiratory motion. Int J Radiat Oncol Biol Phys 2005; 61: 1535–50. doi: 10.1016/j.ijrobp.2004.11.037 [PubMed] [CrossRef] [Google Scholar]

3. Watkins WT, Li R, Lewis J, Park JC, Sandhu A, Jiang SB, et al.. Patient-specific motion artifacts in 4DCT. Med Phys 2010; 37(6Part1): 2855–61. doi: 10.1118/1.3432615 [PubMed] [CrossRef] [Google Scholar]

4. Dinkel J, Hintze C, Tetzlaff R, Huber PE, Herfarth K, Debus J, et al.. 4D-MRI analysis of lung tumor motion in patients with hemidiaphragmatic paralysis. Radiother Oncol 2009; 91: 449–54. doi: 10.1016/j.radonc.2009.03.021 [PubMed] [CrossRef] [Google Scholar]

5. Blackall JM, Ahmad S, Miquel ME, McClelland JR, Landau DB, Hawkes DJ. MRI-based measurements of respiratory motion variability and assessment of imaging strategies for radiotherapy planning. Phys Med Biol 2006; 51: 4147–69. doi: 10.1088/0031-9155/51/17/003 [PubMed] [CrossRef] [Google Scholar]

6. Hu Y, Caruthers SD, Low DA, Parikh PJ, Mutic S. Respiratory Amplitude Guided 4-Dimensional Magnetic Resonance Imaging. Int J Radiat Oncol Biol Phys 2013; 86: 198–204. doi: 10.1016/j.ijrobp.2012.12.014 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

7. Cai J, Chang Z, Wang Z, Paul Segars W, Yin F-F, et al.. Four-dimensional magnetic resonance imaging (4D-MRI) using image-based respiratory surrogate: A feasibility study. Medical Physics 2011; 38: 6384–94. doi: 10.1118/1.3658737 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

8. von Siebenthal M, Székely G, Gamper U, Boesiger P, Lomax A, Cattin P. 4D MR imaging of respiratory organ motion and its variability. Phys Med Biol 2007; 52: 1547–64. doi: 10.1088/0031-9155/52/6/001 [PubMed] [CrossRef] [Google Scholar]

9. Tryggestad E, Flammang A, Han-Oh S, Hales R, Herman J, McNutt T, et al.. Respiration-based sorting of dynamic MRI to derive representative 4D-MRI for radiotherapy planning. Med Phys 2013; 40: 051909. doi: 10.1118/1.4800808 [PubMed] [CrossRef] [Google Scholar]

10. Deng Z, Pang J, Yang W, Yue Y, Sharif B, Tuli R, et al.. Four-dimensional MRI using three-dimensional radial sampling with respiratory self-gating to characterize temporal phase-resolved respiratory motion in the abdomen. Mag Res in Med 2016; 75: 1574–85. doi: 10.1002/mrm.25753 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

11. Rank CM, Heußer T, Buzan MT, Wetscherek A, Freitag MT, Dinkel J, et al.. 4D respiratory motion-compensated image reconstruction of free-breathing radial MR data with very high undersampling. Magn Reson Med 2017; 77: 1170–83. doi: 10.1002/mrm.26206 [PubMed] [CrossRef] [Google Scholar]

12. Han F, Zhou Z, Cao M, Yang Y, Sheng K, Hu P. Respiratory motion-resolved, self-gated 4D-MRI using rotating cartesian k-space (ROCK. Med Phys 2017; 44: 1359–68. doi: 10.1002/mp.12139 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

13. Buerger C, Clough RE, King AP, Schaeffter T, Prieto C. Nonrigid motion modeling of the liver from 3-D undersampled self-gated golden-radial phase encoded MRI. IEEE Trans Med Imaging 2012; 31: 805–15. doi: 10.1109/TMI.2011.2181997 [PubMed] [CrossRef] [Google Scholar]

14. Buerger C, Prieto C, Schaeffter T. Highly efficient 3D motion-compensated abdomen MRI from undersampled golden-RPE acquisitions. Mag Res Mat in Phy, Biol Med 2013; 26: 419–29. doi: 10.1007/s10334-013-0370-y [PubMed] [CrossRef] [Google Scholar]

15. Grimm R, Fürst S, Dregely I, et al.. Self-gated radial MRI for respiratory motion compensation on hybrid PET/MR systems. Med Image Comput Comput Assist Interv 2013; 16: 17–24. [PubMed] [Google Scholar]

16. Bi X, Pang J, Yang W. Improving Respiratory Phase-resolved 3D Body Imaging Using Iterative Motion Correction and Average (MoCoAve). International Society of Magnetic Resonance in Medicine Conference, Scientific Session: Abdominal Technique & Pulse Sequences: Oral Presentation 2016; 24: 1–3. [Google Scholar]

17. Jin J, McKenzie E, Fan Z, Tuli R, Deng Z, Pang J, et al.. Nonlocal means denoising of self-gated and k-space sorted 4-dimensional magnetic resonance imaging using block-matching and 3-dimensional filtering: implications for pancreatic tumor registration and segmentation. Int J Rad Onc *Biol* Phy 2016; 95: 1058–66. doi: 10.1016/j.ijrobp.2016.02.006 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

18. Manjón JV, Coupé P, Buades A, Analysis MI. MRI noise estimation and denoising using non-local PCA. Med Image Anal 2015; 22: 35–47. doi: 10.1016/j.media.2015.01.004 [PubMed] [CrossRef] [Google Scholar]

19. Sheng K, Gou S, Wu J, Qi SX. Denoised and texture enhanced MVCT to improve soft tissue conspicuity. Med Phy 2014; 41: 101916. doi: 10.1118/1.4894714 [PubMed] [CrossRef] [Google Scholar]

20. Winkelmann S, Schaeffter T, Koehler T, Eggers H, Doessel O. An optimal radial profile order based on the Golden Ratio for time-resolved MRI. IEEE Trans Med Imaging 2007; 26: 68–76. doi: 10.1109/TMI.2006.885337 [PubMed] [CrossRef] [Google Scholar]

21. Chan RW, Ramsay EA, Cunningham CH, Plewes DB. Temporal stability of adaptive 3D radial MRI using multidimensional golden means. Magn Reson Med 2009; 61: 354–63. doi: 10.1002/mrm.21837 [PubMed] [CrossRef] [Google Scholar]

22. Kim D, Dyvorne HA, Otazo R, Feng L, Sodickson DK, Lee VS. Accelerated phase-contrast cine MRI using k-t SPARSE-SENSE. Magn Reson Med 2012; 67: 1054–64. doi: 10.1002/mrm.23088 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

23. Avants BB, Epstein CL, Grossman M, Gee JC. Symmetric diffeomorphic image registration with cross-correlation: evaluating automated labeling of elderly and neurodegenerative brain. Med Image Anal 2008; 12: 26–41. doi: 10.1016/j.media.2007.06.004 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

24. Li D, Carr JC, Shea SM, Zheng J, Deshpande VS, Wielopolski PA, et al.. Coronary arteries: magnetization-prepared contrast-enhanced three-dimensional volume-targeted breath-hold MR angiography. Radiology 2001; 219: 270–7. doi: 10.1148/radiology.219.1.r01ap37270 [PubMed] [CrossRef] [Google Scholar]

25. Crosara S, D'Onofrio M, De Robertis R. Acoustic Radiation Force Impulse (ARFI) of the pancreas. ESR 2014;: 1–12. [Google Scholar]

26. Prieto C, Uribe S, Razavi R, Atkinson D, Schaeffter T. 3D undersampled golden-radial phase encoding for DCE-MRA using inherently regularized iterative SENSE. Magnetic Resonance in Medicine 2010; 25: n/a. doi: 10.1002/mrm.22446 [PubMed] [CrossRef] [Google Scholar]

27. Küstner T, Würslin C, Schwartz M, Martirosian P, Gatidis S, Brendle C, et al.. Self-navigated 4D cartesian imaging of periodic motion in the body trunk using partial k-space compressed sensing. Magn Reson Med 2017; 78: 632–44. doi: 10.1002/mrm.26406 [PubMed] [CrossRef] [Google Scholar]

28. Deng Z, Yang W, Pang J, Bi X, Tuli R, Li D, et al.. Improved vessel-tissue contrast and image quality in 3D radial sampling-based 4D-MRI. J Appl Clin Med Phys 2017; 18: 250–7. doi: 10.1002/acm2.12194 [PMC free article] [PubMed] [CrossRef] [Google Scholar]


Page 2

Patient image quality score and correlation coefficient of respiratory motion trajectory between MoCoAve and non-MoCoAve image sets

No.Age (y)SexTumor locationImage acquisition typeMocoAve/non-MocoAveMotion trajectory
aSNRImage scoreSharpnessσ_GTVAbsolute difference (SI, mm)Correlation coefficient
SIAPML
172MLungSOS28.3/13.93/1.50.42/0.401.180.83−0.360.68
274MLiverSOS‡37.8/15.23/10.36/0.370.390.750.700.35
353MPancreasSOS61.8/22.52.5/10.28/0.264.41/4.490.360.930.480.65
479MPancreasSOS†10.9/5.02.5/10.41/0.421.72/2.780.490.950.790.45
569MPancreasSOS49.6/21.13/20.34/0.341.84/2.660.370.920.860.32
679MPancreasKB†19.5/16.82/10.39/0.401.72/1.540.060.970.930.44
774MLiverKB‡25.9/17.32/10.28/0.300.150.780.690.24
879MPancreasKB51.8/34.02.5/1.50.42/0.450.95/1.870.540.95−0.210.20
979FPancreasKB36.1/19/13/10.35/0.360.34/1.070.120.960.490.15
1035MPancreasKB45.0/18.163/10.36/0.350.72/2.730.660.990.320.66
1172FPancreasKB46.6/26.12.5/10.43/0.420.14/0.200.880.960.93−0.04
Mean (STD)68 (15)37.6/18.1 (15.3)/(5.7)2.64/1.18 (0.39)/(0.34)0.367/0.369 (0.068)/(0.072)1.48/2.17 (1.35)/(1.31)0.47 (0.34)0.91 (0.08)0.51 (0.44)0.37 (0.23)
p-value0.0010.0010.8050.039