Wann kam das Wasser auf die Erde

Einer neuen Studie zufolge könnte das Wasser auf der Erde von Materialien aus dem inneren Sonnensystem stammen.

Seit vielen Jahren diskutieren Forscher, woher die großen Wassermengen auf unserem Planeten stammen können. Eine neue Untersuchung liefert nun eine für viele überraschende Erklärung: Demnach könnte das Wasser bereits in den Substanzen enthalten gewesen sein, aus denen sich die Erde formte. Die Erde soll somit bereits seit ihrer Entstehung feucht gewesen sein. Eine entsprechende Studie wurde im Fachblatt Science veröffentlicht. 

Bislang ging man davon aus, dass unser innerstes Sonnensystem bei seiner Entstehung vor 4,6 Milliarden Jahren zu heiß war, um Wasser bzw. Eis zu enthalten. Die Erklärung, wie es dennoch dazu kam, dass unsere Erde so nass wurde, waren bislang Meteoriten aus dem äußeren Sonnensystem, wo es kühler war. Als hauptverdächtige Lieferanten von Wasser galten sogenannte kohlige Chondrite. Diese Theorie hatte allerdings ihre Schwächen, denn die Zusammensetzung des Gesteins auf der Erde passte nicht mit den kohligen Chondriten zusammen.

Alternative Theorie

Besser zum “Fingerabdruck” unserer Gesteinsarten passen Meteoriten vom Typ Enstatit-Chondrit. Da sich jene in der Nähe der Sonne bildeten, ging man eigentlich davon aus, dass sie zu trocken waren, um Wasser auf die Erde gebracht zu haben. 

Die Forscher des Centre de Recherches Petrographiques et Geochimiques in Nancy liefern in ihrer neuen Studie nun eine andere Erklärung. Sie stellten fest, dass die Enstatit-Chondriten ausreichend Wasserstoff enthalten, um unsere Ozeane 3 Mal zu füllen. Das fanden sie mithilfe einer Massenspektrometrie heraus. 

Heute selten

Die Untersuchung stellte sich als schwierig heraus, da diese Art der Meteoriten heute sehr selten vorkommt und es schwierig ist, sie in unkontaminiertem Zustand aufzufinden. Den Forschern gelang es dennoch, 13 dieser Meteoriten für die Studie zu untersuchen. "Wir haben festgestellt, dass die Wasserstoffisotopenzusammensetzung von Enstatit-Chondriten der des im Erdmantel gespeicherten Wassers sehr ähnlich ist", sagt die leitende Autorin der Studie Laurette Piani. 

Die Erkenntnisse schließen laut Piani aber nicht aus, dass weiteres Wasser später durch andere Quellen wie Kometen auf die Erde gekommen ist. Die Studie liefert aber einen Hinweis darauf, dass Enstatit-Chondriten erheblich zum Wasserhaushalt der Erde beigetragen hatten, als unser Planet entstanden ist. Anne Peslier, Planetenforscherin bei der NASA, nennt die Forschung in einem begleitenden Artikel ein "entscheidendes und elegantes Puzzleteil" im Rätsel der Herkunft unseres Wassers.

Wann kam das Wasser auf die Erde

Klicken Sie hier für die Newsletteranmeldung

So viel ist sicher: Ohne Wasser gäbe es kein Leben auf der Erde. Doch bei der Frage nach der Quelle der Substanz schwimmt die Wissenschaft. Ein Erklärungsansatz

Viele Forscher favorisieren eisige Kometen und Asteroiden, die vor Jahrmilliarden mit unserem Planeten kollidierten und ihre Kühlfracht deponierten. Womöglich kam aber zumindest ein Teil des Wassers woanders her – nicht aus den Tiefen des Alls, sondern aus dem Bauch der Erde.

Ein Team unter anderem von der kanadischen Universität Saskatchewan konnte zeigen, dass unter dem hohen Druck und den hohen Temperaturen im Erdmantel bis in 400 Kilometer Tiefe zwei häufige „Zutaten“ des Planeten miteinander zu Wasser reagieren: Quarz und Wasserstoff. Wasserstoff, das häufigste Element im Universum, ist im Gestein eingeschlossen.

Quarz, chemisch gesehen: Siliciumdioxid, ist auf der Erde weit verbreitet. Das Mineral ist normalerweise äußerst stabil. Bei 1400 Grad Celsius und dem 20.000-fachen Atmosphärendruck im Untergrund allerdings wird es reaktionsfreudig.

Die Wissenschaftler simulierten die chemischen Vorgänge in der Tiefe mithilfe eines Computers. Sie stützten sich dabei auf Experimente japanischer Kollegen, die Quarz und Wasserstoff im Labor erhitzt und unter Druck gesetzt hatten.

In den Simulationen sammelte sich das neu entstandene Wasser im Gestein und baute zusätzlichen Druck auf. Der kann sich in einem Erdbeben entladen. Diese „Wasserkraft“ könnte eine Erklärung sein für Erschütterungen in großer Tiefe, über deren Ursprung Forscher noch rätseln.

GEO Nr. 04/2017 - Gelenke

Die Herkunft des irdischen Wassers ist bis heute nicht vollständig geklärt:

  • Ein Teil des Wassers ist als Wasserdampf aus Magma ausgegast, kommt also letztlich aus dem Erdinneren.
  • Ein weiterer Anteil stammt von Einschlägen von Kometen, transneptunischen Objekten oder wasserreichen Asteroiden (Protoplaneten) aus den äußeren Bereichen des Asteroidengürtels.

Wann kam das Wasser auf die Erde

Wasser bedeckt ca. 71 % der Erdoberfläche

Dabei deuten Messungen des Wasserstoffisotopen-Verhältnisses von Deuterium und Protium (H-1) (D/H-Verhältnis) eher auf Asteroiden hin, da in Wassereinschlüssen in kohligen Chondriten ähnliche Isotopen-Verhältnisse gefunden wurden wie in Ozean-Wasser. Dagegen stimmt das D/H-Verhältnis von Kometen und transneptunischen Objekten nach bisherigen Messungen nur schlecht mit dem von irdischem Wasser überein.

Für die derzeitigen Wasservorkommen im Sonnensystem und speziell auf der Erde siehe Wasservorkommen im Universum#Sonnensystem.

Eines der Hauptprobleme beim Versuch, die Herkunft des irdischen Wassers zu klären, bildet die Frage nach dem Wassergehalt der Planetesimale, welche die Erde bildeten. Hier gibt es zwei Modelle:

  • das Modell der nassen Akkretion (engl. wet accretion), dem zufolge genügend Wasser in den Planetesimalen vorhanden war;[1]
  • das Modell der trockenen Akkretion (engl. dry accretion), dem zufolge der Wassergehalt zu niedrig war, um die heutige Wassermenge auf der Erde zu erklären.[2]

Je nachdem, welches Modell man annimmt,

  • kann die Herkunft entweder durch reines vulkanisches Ausgasen aus dem Erdinneren erklärt werden (bei nasser Akkretion) oder
  • man benötigt extraterrestrische Quellen (bei trockener Akkretion).

Heutige Vulkane emittieren zwar Wasserdampf, jedoch stammt dieser überwiegend nicht aus dem Erdinnern, sondern von der Erdoberfläche. So konnte man z. B. an Vulkanen in Hawaii zeigen, dass der Wasserdampf größtenteils aus dem Grundwasserreservoir stammt.[3]

Eine weitere wichtige Frage ist, ob vulkanische Transportmechanismen effektiv genug sind, um eventuell vorhandenes Wasser im Erdinnern an die Oberfläche zu transportieren.

Ein Vertreter einer Herkunft des Wassers aus dem Erdinneren über Ausgasen war Michael Julian Drake (1946–2011).[4] Er begründet die irdische Herkunft des Wassers mit Isotopenuntersuchungen von Meteoriten und Material aus dem oberen Mantel der Erde. Demnach kann kein später großer Einschlag eines Körpers aus Material, wie es durch heutige Meteoriten repräsentiert wird, wesentlich zur Zusammensetzung des oberen Mantels der Erde beigetragen haben. Andererseits räumt Drake ein, dass ein großer „nasser“ Planetenembryo aus dem Asteroidengürtel oder auch ein Komet mit entsprechender Element- und Isotopenzusammensetzung letztlich nicht auszuschließen seien.

Das Problem der nassen Akkretion, welche bei den Temperaturen in der Erdumlaufbahn nicht einfach zu erklären ist, versucht Drake damit zu erklären, dass die Staubkörner in der Akkretionsscheibe, welche sich zu den Planetesimalen zusammenballten, fraktaler Natur waren. Wegen der daraus resultierenden, großen Oberfläche konnte demnach genügend Wasser adsorbiert werden.

Gemäß der nassen Akkretion war genügend Wasser in den Planetesimalen vorhanden. Dieses Wasser und andere leicht flüchtige Stoffe wie Kohlenstoffdioxid (CO2), Methan (CH4) und Stickstoff (N2) gasten aus der größtenteils aus flüssigem Magma bestehenden Ur-Erde aus und bildeten eine frühe, wasserdampfreiche Uratmosphäre. Diese wurde nach heutigen Modellvorstellungen durch einen Sonnenwind, der zur Zeit der Erdentstehung sehr viel heftiger war als heute, mitgerissen und entwich somit von der Erde.

Durch Vulkanismus kam es später zur Bildung einer neuen Atmosphäre, die auch aus dem Erdinnern ausgegasten Wasserdampf enthalten haben dürfte. Mit der Bildung einer festen Erdkruste und der weiteren Abkühlung kam es demnach zur Kondensation von Wasserdampf und zur Bildung erster Ozeane.

 

gewöhnlicher Chondrit

Die in diesem Modell angenommene trockene Akkretion wird dadurch begründet, dass die Planetesimale in einem Bereich des früheren Sonnensystems entstanden, in dem relativ wenig Wasser vorhanden war. Je kleiner der Abstand zur Sonne war, desto höher die Temperaturen, und desto weniger Wasser war vorhanden. Erst außerhalb der solaren Schneegrenze, welche etwa inmitten des heutigen Asteroidengürtels lag, war Wasser in größerer Menge vorhanden. So zeigen kohlige Chondrite, von denen angenommen wird, dass sie in den äußeren Bereichen des Asteroidengürtels entstanden sind, einen Wassergehalt von manchmal mehr als 10 % ihrer Masse, während gewöhnliche Chondrite oder gar Enstatit-Chondrite vom inneren Rand des Asteroidengürtels weniger als 0,1 % ihrer Masse an Wasser enthalten. Die Planetesimale sollten dementsprechend noch weniger Wasser enthalten haben.

Zudem wird angenommen, dass bei der Akkretion der Planetesimale zu den Planeten und dem Verlust der Uratmosphäre nochmals große Mengen des ursprünglich vorhandenen Wassers verloren gingen. Deswegen wird heute von vielen Planetologen angenommen, dass der überwiegende Teil des heutigen irdischen Wassers aus den äußeren Bereichen des Sonnensystems stammt.

Ein rein kometarer Ursprung des Wassers wurde nach Messung des Isotopenverhältnisses von Wasserstoff in den drei Kometen Halley, Hyakutake und Hale-Bopp durch Forscher wie David Jewitt für unwahrscheinlich gehalten, da dort das Verhältnis von Deuterium zu Protium (D/H-Verhältnis) etwa doppelt so hoch ist wie in ozeanischem Wasser.[5] Im Dezember 2014 analysierte die Raumsonde Rosetta den Wasserdampf in der Nähe des Kometen Tschurjumow-Gerassimenko; auch diese Messungen ergaben, dass das irdische Wasser höchstwahrscheinlich nicht von Kometen stammt.[6]

Alternativ wurde der Asteroidengürtel als Quelle des Wassers vorgeschlagen, denn Wassereinschlüsse in kohligen Chondriten zeigen ein ähnliches D/H-Verhältnis wie ozeanisches Wasser. Nach A. Morbidelli et al.[7] kommt der größte Teil des heutigen Wassers von einigen im äußeren Asteroidengürtel geformten Protoplaneten, die auf die Erde stürzten. Inzwischen wurde eine Klasse von Kometen ausgemacht, die aus dieser Region stammen könnten.[8] Zwei dieser Kometen konnten bisher auf ihr D/H-Verhältnis hin untersucht werden: sowohl C/1999 S4 LINEAR[9] als auch Hartley 2[10] tragen ‘irdisches’ Wasser.

Nach einer 2019 publizierten Studie[11] kann anhand des Isotopenverhältnisses des Molybdäns der Erde belegt werden, dass der Körper (Theia), der beim Aufprall auf die Erde vor 4 Milliarden Jahren den Mond entstehen ließ, aus dem äußeren Sonnensystem stammte und somit einen Großteil des Wassers auf die Erde gebracht haben könnte.

In den Urozeanen vorkommender Schwefelwasserstoff und in der Uratmosphäre vorhandenes Kohlendioxid wurde von autotrophen Schwefelbakterien (Prokaryoten) unter Zufuhr von Lichtenergie zum Aufbau organischer Verbindungen genutzt, wobei Methan, Wasser und Schwefel entstanden:

4   H 2 S + C O 2 → C H 4 + 2   H 2 O + 4   S {\displaystyle \mathrm {4\ H_{2}S+CO_{2}\rightarrow CH_{4}+2\ H_{2}O+4\ S} }  

(Photosystem I).

  • Jörn Müller, Harald Lesch (2003): Woher kommt das Wasser der Erde? – Urgaswolke oder Meteoriten. In: Chemie in unserer Zeit. Band 37, Nr. 4, ISSN 0009-2851, S. 242–246.
  • Thérèse Encrenaz: Searching for water in the universe. Springer, Berlin 2006, ISBN 0-387-34174-9.
  • Arnold Hanslmeier: Water in the Universe. Springer, Dordrecht 2011, ISBN 978-90-481-9984-6.
  • Vom Ursprung des Wassers. Auf: planeterde.de – Herausgeber: Bundesministerium für Bildung und Forschung, Referat „System Erde“
  • Manch Wasser der Erde ist älter als die Sonne. In: Die Welt, 25. September 2014
  1. M.J. Drake, K. Righter: Determining the composition of the Earth. In: Nature. Band 416, 2002, S. 39–44.
  2. A. P. Boss: Temperatures in protoplanetary disks. In: Ann. Rev. Earth Planet. Sci. Band 26, 1998, S. 26–53.
  3. AN ISOTOPE HYDROLOGY STUDY OF THE KILAUEA VOLCANO AREA, HAWAII. U.S. GEOLOGICAL SURVEY, Water-Resources Investigations Report 95-4213 (PDF)
  4. Michael J. Drake: Origin of water in the terrestrial planets. In: Meteoritics & Planetary Science. Band 40, Nr. 4, S. 1–9, 2005, Volltext (PDF)
  5. Roland Meier et al.: A Determination of the HDO/H2O Ratio in Comet C/1995 O1 (Hale-Bopp), Science, Band 279, 1998, S. 842–844, doi:10.1126/science.279.5352.842, Volltext (Memento vom 19. September 2009 im Internet Archive) (PDF; 319 kB).
  6. K. Altwegg et al.: 67P/Churyumov-Gerasimenko, a Jupiter family comet with a high D/H Ratio. In: Science. Online-Vorabveröffentlichung vom 10. Dezember 2014, doi:10.1126/science.1261952
    Irdisches Wasser stammt wohl nicht von Kometen. Auf: zeit.de vom 10. Dezember 2014
  7. A. Morbidelli, et al.: Source regions and timescales for the delivery of water to the Earth, Meteoritics & Planetary Science, Band 35, 2000, S. 1309–1329.
  8. Henry H. Hsieh und David Jewitt: A Population of Comets in the Main Asteroid Belt. In: Science. Band 312, 2006, S. 561–563, doi:10.1126/science.1125150, Volltext (Memento vom 6. September 2008 im Internet Archive) (PDF; 1,6 MB).
  9. NASA: A Taste for Comet Water, 18. Mai 2001.
  10. ESA: Did Earth's oceans come from comets?, 5. Oktober 2011.
  11. Gerrit Budde, Christoph Burkhardt und Thorsten Kleine: Molybdenum isotopic evidence for the late accretion of outer Solar System material to Earth. In: Nature Astronomy. Online-Veröffentlichung vom 20. Mai 2019, doi:10.1038/s41550-019-0779-y

Abgerufen von „https://de.wikipedia.org/w/index.php?title=Herkunft_des_irdischen_Wassers&oldid=214642047“