Em uma PG finita de 8 termos o primeiro termo é 3 é a razão e 4 qual será a soma dos seus 8 termos

1 – Definição

Entenderemos por progressão geométrica - PG - como qualquer sequência de números reais ou complexos, onde cada termo a partir do segundo, é igual ao anterior, multiplicado por uma constante denominada razão.

Exemplos:
(1,2,4,8,16,32, ... ) PG de razão 2 (5,5,5,5,5,5,5, ... ) PG de razão 1 (100,50,25, ... ) PG de razão 1/2

(2,-6,18,-54,162, ...) PG de razão -3

2 - Fórmula do termo geral

Seja a PG genérica: (a1, a2, a3, a4, ... , a n, ... ) , onde a1 é o primeiro termo, e an é o n-ésimo termo, ou seja, o termo de ordem n. Sendo q a razão da PG, da definição podemos escrever:
a2 = a1 . q
a3 = a2 . q = (a1 . q) . q = a1 . q2
a4 = a3 . q = (a1 . q2) . q = a1 . q3
................................................
................................................

Infere-se (deduz-se) que: an = a1 . qn-1 , que é denominada fórmula do termo geral da PG.
Genericamente, poderemos escrever: aj = ak . qj-k

Exemplos:

a) Dada a PG (2,4,8,... ), pede-se calcular o décimo termo.
Temos: a1 = 2, q = 4/2 = 8/4 = ... = 2. Para calcular o décimo termo ou seja a10, vem pela fórmula:
a10 = a1 . q9 = 2 . 29 = 2. 512 = 1024

b) Sabe-se que o quarto termo de uma PG crescente é igual a 20 e o oitavo termo é igual a 320. Qual a razão desta PG?
Temos a4 = 20 e a8 = 320. Logo, podemos escrever: a8 = a4 . q8-4 . Daí, vem: 320 = 20.q4
Então q4 =16 e portanto q = 2.

Nota: Uma PG genérica de 3 termos, pode ser expressa como:
(x/q, x, xq), onde q é a razão da PG.

3 - Propriedades principais

P1 - em toda PG, um termo é a média geométrica dos termos imediatamente anterior e posterior.
Exemplo: PG (A,B,C,D,E,F,G)
Temos então: B2 = A . C ; C2 = B . D ; D2 = C . E ; E2 = D . F etc.

P2 - o produto dos termos equidistantes dos extremos de uma PG é constante.
Exemplo: PG ( A,B,C,D,E,F,G)
Temos então: A . G = B . F = C . E = D . D = D2

4 - Soma dos n primeiros termos de uma PG

Seja a PG (a1, a2, a3, a4, ... , an , ...) . Para o cálculo da soma dos n primeiros termos Sn , vamos considerar o que segue:
Sn = a1 + a2 + a3 + a4 + ... + an-1 + an

Multiplicando ambos os membros pela razão q vem:
Sn . q = a1 . q + a2 .q + .... + an-1 . q + an .q .

Logo, conforme a definição de PG, podemos reescrever a expressão acima como:
Sn . q = a2 + a3 + ... + an + an . q

Observe que a2 + a3 + ... + an é igual a Sn - a1 . Logo, substituindo, vem:
Sn . q = Sn - a1 + an . q

Daí, simplificando convenientemente, chegaremos à seguinte fórmula da soma:

Em uma PG finita de 8 termos o primeiro termo é 3 é a razão e 4 qual será a soma dos seus 8 termos

Se substituirmos a n = a1 . qn-1 , obteremos uma nova apresentação para a fórmula da soma, ou seja:

Em uma PG finita de 8 termos o primeiro termo é 3 é a razão e 4 qual será a soma dos seus 8 termos

Exemplo:

Calcule a soma dos 10 primeiros termos da PG (1,2,4,8,...)
Temos:

Em uma PG finita de 8 termos o primeiro termo é 3 é a razão e 4 qual será a soma dos seus 8 termos

Observe que neste caso a1 = 1.

5 - Soma dos termos de uma PG decrescente e ilimitada

Considere uma PG ILIMITADA ( infinitos termos) e decrescente. Nestas condições, podemos considerar que no limite teremos an = 0. Substituindo na fórmula anterior, encontraremos:

Em uma PG finita de 8 termos o primeiro termo é 3 é a razão e 4 qual será a soma dos seus 8 termos

Exemplo: Resolva a equação: x + x/2 + x/4 + x/8 + x/16 + ... =100

Ora, o primeiro membro é uma PG de primeiro termo x e razão 1/2. Logo, substituindo na fórmula, vem:

Em uma PG finita de 8 termos o primeiro termo é 3 é a razão e 4 qual será a soma dos seus 8 termos

Daí, vem: x = 100 . 1/2 = 50

6 – Exercícios resolvidos e propostos

6.1 - Se a soma dos tres primeiros termos de uma PG decrescente é 39 e o seu produto é 729 , então sendo a, b e c os tres primeiros termos , pede-se calcular o valor de a2 + b2 + c2 .

Solução:

Sendo q a razão da PG, poderemos escrever a sua forma genérica: (x/q, x, xq). Como o produto dos 3 termos vale 729, vem: x/q . x . xq = 729 de onde concluímos que:

x3 = 729 = 36 = 33 . 33 = 93 , logo, x = 9.

Portanto a PG é do tipo: 9/q, 9, 9q É dado que a soma dos 3 termos vale 39, logo:

9/q + 9 + 9q = 39 de onde vem: 9/q + 9q – 30 = 0

Multiplicando ambos os membros por q, fica:
9 + 9q2 – 30q = 0

Dividindo por 3 e ordenando, fica:
3q2 – 10q + 3 = 0, que é uma equação do segundo grau.
Resolvendo a equação do segundo grau acima encontraremos q = 3 ou q = 1/3.

Como é dito que a PG é decrescente, devemos considerar apenas o valor q = 1/3, já que para q = 3, a PG seria crescente. Portanto, a PG é:

9/q, 9, 9q, ou substituindo o valor de q vem: 27, 9, 3.

O problema pede a soma dos quadrados, logo:
a2 + b2 + c2 = 272 + 92 + 32 = 729 + 81 + 9 = 819

6.2 - Sabe-se que S = 9 + 99 + 999 + 9999 + ... + 999...9 onde a última parcela contém n algarismos. Nestas condições, o valor de 10n+1 - 9(S + n) é:
A)1 *B) 10 C) 100 D) -1

E) -10

Solução:

Observe que podemos escrever a soma S como:
S = (10 – 1) + (100 – 1) + (1000 – 1) + (10000 – 1) + ... + (10n – 1)
S = (10 – 1) + (102 – 1) + (103 – 1) + (104 – 1) + ... + (10n – 1) Como existem n parcelas, observe que o número (– 1) é somado n vezes,

resultando em n(-1) = - n.

Logo, poderemos escrever:
S = (10 + 102 + 103 + 104 + ... + 10n ) – n

Vamos calcular a soma Sn = 10 + 102 + 103 + 104 + ... + 10n , que é uma PG de primeiro termo a1 = 10, razão q = 10 e último termo an = 10n . Teremos:
Sn = (an.q – a1) / (q –1) = (10n . 10 – 10) / (10 – 1) = (10n+1 – 10) / 9 Substituindo em S, vem:

S = [(10n+1 – 10) / 9] – n

Deseja-se calcular o valor de 10n+1 - 9(S + n)
Temos que S + n = [(10n+1 – 10) / 9] – n + n = (10n+1 – 10) / 9

Substituindo o valor de S + n encontrado acima, fica:
10n+1 – 9(S + n) = 10n+1 – 9(10n+1 – 10) / 9 = 10n+1 – (10n+1 – 10) = 10

6.3 - O limite da expressão

Em uma PG finita de 8 termos o primeiro termo é 3 é a razão e 4 qual será a soma dos seus 8 termos
onde x é positivo, quando o número de radicais aumenta indefinidamente é igual a:A)1/x *B) x C) 2x D) n.x

E) 1978x

Solução:

Observe que a expressão dada pode ser escrita como:
x1/2. x1/4 . x1/8 . x1/16 . ... = x1/2 + 1 / 4 + 1/8 + 1/16 + ...

O expoente é a soma dos termos de uma PG infinita de primeiro termo a1 = 1 /2 e
razão q = 1 /2. Logo, a soma valerá: S = a1 / (1 – q) = (1 /2) / 1 – (1 /2) = 1
Então, x1/2 + 1 / 4 + 1/8 + 1/16 + ... = x1 = x

6.4 - UEFS - Os números que expressam os ângulos de um quadrilátero, estão em progressão geométrica de razão 2. Um desses ângulos mede:
a) 28° b) 32° c) 36° *d) 48° e) 50° Solução:

Seja x o menor ângulo interno do quadrilátero em questão. Como os ângulos estão em Progressão Geométrica de razão 2, podemos escrever a PG de 4 termos:
( x, 2x, 4x, 8x ). Ora, a soma dos ângulos internos de um quadrilátero vale 360º . Logo,

x + 2x + 4x + 8x = 360º


15.x = 360º
Portanto, x = 24º . Os ângulos do quadrilátero são, portanto: 24º, 48º, 96º e 192º.
O problema pede um dos ângulos. Logo, alternativa D.

Agora resolva este:

Calcular a razão de uma PG crescente, sabendo-se que o seu primeiro termo é o dobro da razão e que a soma dos dois primeiros termos é 24.
Resposta: 3


Page 2

  • A Comissão Permanente para os Vestibulares da Unicamp (Comvest) abriu hoje (21 ...
  • Para acessar a informação, é necessário número do CPF e senha ...
  • Hoje (17) é o último dia para os estudantes se inscreverem no Exame Nacional ...

Suas ideias são importantes para nós, aproveite o espaço que o Algo Sobre disponibiliza para você professor, jornalista ou estudante divulgar seu trabalho com publicações no site.

Enviar agora

Uma progressão geométrica (PG) é uma sequência de números na qual, a partir do segundo, todo termo é igual ao produto do anterior com uma constante, chamada de razão da PG e representada pela letra q. É possível encontrar o termo geral da PG, somar os termos de uma PG finita ou infinita e encontrar o produto dos termos da PG finita por meio de fórmulas, todas obtidas de maneira simples a partir de algumas propriedades da Matemática.

A fórmula usada para determinar o produto dos termos de uma PG finita é a seguinte:

Nessa fórmula, Pn é o resultado encontrado, ou seja, o produto dos termos de uma PG que possui n termos, a1 é o primeiro termo da PG, “q” é sua razão e “n” seu número de termos.

Para demonstrar essa fórmula, é preciso discutir o que acontece com cada termo da PG quando tentamos escrevê-lo em função do primeiro. Para fazer isso, escreveremos a decomposição em fatores primos de cada termo.

Termos de uma PG

Como exemplo, observe a PG a seguir, cujo primeiro termo é 3 e a razão é 2:

(3, 6, 12, 24, 48, 96, 192, …)

Cada termo dessa PG pode ser obtido por meio de um produto do anterior com 2:

3 = 3

6 = 3·2

12 = 6·2

24 = 12·2

Note também que é possível escrever cada um desses termos como um produto do primeiro termo pela razão:

3 = 3

6 = 3·2

12 = 3·2·2

24 = 3·2·2·2

48 = 3·2·2·2·2

96 = 3·2·2·2·2·2

192 = 3·2·2·2·2·2·2

Para tornar mais clara a relação entre cada termo e a razão da PG, escreveremos cada termo em função do primeiro, multiplicado pela razão na forma de potência, dispondo também a posição ocupada pelos termos com o uso de índices:

a1 = 3 = 3·20

a2 = 6 = 3·21

a3 = 12 = 3·22

a4 = 24 = 3·23

a5 = 48 = 3·24

a6 = 96 = 3·25

a7 = 192 = 3·26

Cada termo da PG é um produto do primeiro termo por uma potência, cuja base é a razão e cujo expoente é uma unidade menor que “a posição” que esse termo ocupa. O sétimo termo, por exemplo, é dado por 3·26.

Assim, podemos admitir que, para qualquer PG:

an = a1·qn – 1

Demonstração da fórmula

Para demonstrar essa fórmula, podemos repetir o procedimento anterior para uma PG finita qualquer a fim de escrever todos os seus elementos em função do primeiro e da razão. Depois, multiplicar todos os termos dessa PG e simplificar o resultado.

Dada a PG (a1, a2, a3, a4, …, an), cuja razão é q, podemos escrever seus termos em função do primeiro:

a1 = a1

a2 = a1·q1

a3 = a1·q2

an – 2 = a1·qn – 3

an – 1 = a1·qn – 2

an = a1·qn – 1

Multiplicando os n termos da PG finita, temos:

Pn = a1·a2·a3· … ·an – 2·an – 1·an

Pn = a1·a1·q1·a1·q2·…·a1·qn – 3·a1·qn – 2·a1·qn – 1

Reorganizando os termos do produto, temos:

Pn = a1· … ·a1·a1·…·a1 ·q1·q2· … ·qn – 3·qn – 2·qn – 1

Observe que a quantidade de a1 que aparece na expressão acima é n, pois a PG possui n termos. Como se trata de uma multiplicação, podemos escrever todos esses “a1” na forma de potência:

Pn = a1n ·q1·q2· … ·qn – 3·qn – 2·qn – 1

Com relação ao produto das razões, podemos notar que as bases são iguais, portanto, pelas propriedades de potências, mantemos a base e somamos os expoentes:

Pn = a1n·q1 + 2 + 3 + … + n – 2 + n – 1

Para finalizar, observe que a soma 1 + 2 + 3 … + n – 2 + n – 1 possui exatamente n – 1 elementos. Como discutido no exemplo, esse índice é sempre uma unidade menor que a “posição” do termo que ele representa, nesse caso, an. Essa é a soma dos termos da progressão aritmética finita B de n termos, cujo primeiro termo é 1 e a razão também é 1. Portanto, a soma dos termos dessa PA é:

Sn = (b1 + bn)n
              2     

O número de termos da PA é n – 1, logo:

Sn = (1 + n – 1)(n – 1)
                   2        

Sn = n(n – 1)
             2   

Substituindo esse resultado pela soma na fórmula:

Pn = a1n·q1 + 2 + 3 + … + n – 2 + n – 1

Obtemos a fórmula do produto dos termos de uma PG finita:

Videoaula relacionada: