Which of the following analogies best describes how neurotransmitters and receptors interact?

What exactly are hormones and how are they different from "non-hormones"? Hormones are chemical messengers secreted into blood or extracellular fluid by one cell that affect the functioning of other cells.

Most hormones circulate in blood, coming into contact with essentially all cells. However, a given hormone usually affects only a limited number of cells, which are called target cells. A target cell responds to a hormone because it bears receptors for the hormone.

In other words, a particular cell is a target cell for a hormone if it contains functional receptors for that hormone, and cells which do not have such a receptor cannot be influenced directly by that hormone. Reception of a radio broadcast provides a good analogy. Everyone within range of a transmitter for National Public Radio is exposed to that signal (even if they don't contribute!). However, in order to be a NPR target and thus influenced directly by their broadcasts, you have to have a receiver tuned to that frequency.

Which of the following analogies best describes how neurotransmitters and receptors interact?

Hormone receptors are found either exposed on the surface of the cell or within the cell, depending on the type of hormone. In very basic terms, binding of hormone to receptor triggers a cascade of reactions within the cell that affects function. Additional details about receptor structure and function are provided in the section on hormone mechanism of action.

A traditional part of the definition of hormones described them as being secreted into blood and affecting cells at distant sites. However, many of the hormones known to act in that manner have been shown to also affect neighboring cells or even have effects on the same cells that secreted the hormone. Nonetheless, it is useful to be able to describe how the signal is distributed for a particular hormonal pathway, and three actions are defined:

  • Endocrine action: the hormone is distributed in blood and binds to distant target cells.
  • Paracrine action: the hormone acts locally by diffusing from its source to target cells in the neighborhood.
  • Autocrine action: the hormone acts on the same cell that produced it.
Which of the following analogies best describes how neurotransmitters and receptors interact?

Two important terms are used to refer to molecules that bind to the hormone-binding sites of receptors:

  • Agonists are molecules that bind the receptor and induce all the post-receptor events that lead to a biologic effect. In other words, they act like the "normal" hormone, although perhaps more or less potently. Natural hormones are themselves agonists and, in many cases, more than one distinct hormone binds to the same receptor. For a given receptor, different agonists can have dramatically different potencies.
  • Antagonists are molecules that bind the receptor and block binding of the agonist, but fail to trigger intracellular signalling events. Antagonists are like certain types of bureaucrats - they don't themselves perform useful work, but block the activities of those that do have the capacity to contribute. Hormone antagonists are widely used as drugs.

Finally, a comment on the names given hormones and what some have called the tyranny of terminology. Hormones are inevitably named shortly after their discovery, when understanding is necessarily rudimentary. They are often named for the first physiologic effect observed or for their major site of synthesis. As knowledge and understanding of the hormone grow, the original name often appears inappropriate or too restrictive, but it has become entrenched in the literature and is rarely changed. In other situations, a single hormone will be referred to by more than one name. The problem is that the names given to hormones often end up being either confusing or misleading. The solution is to view names as identifiers rather than strict guidelines to source or function.

Send comments to

Ackers, G.K., Doyle, M.L., Myers, D., and Daugherty, M.A. (1992). Molecular code of cooperativity in haemoglobin. Science 255, 54–63.10.1126/science.1553532Search in Google Scholar

Agnati, L.F. and Fuxe, K. (2000). Volume transmission as a key feature of information handling in the central nervous system possible new interpretative value of the Turing’s B-type machine. Prog. Brain Res. 125, 3–19.10.1016/S0079-6123(00)25003-6Search in Google Scholar

Agnati, L.F., Fuxe, K., Zini, I., Lenzi, P., and Hökfelt T. (1980). Aspects on receptor regulation and isoreceptor identification. Med. Biol. 58, 182–187.Search in Google Scholar

Agnati, L.F., Fuxe, K., Zoli, M., Rondanini, C., and Ogren, S.O. (1982). New vistas on synaptic plasticity: the receptor mosaic hypothesis on the engram. Med. Biol. 60, 183–190.Search in Google Scholar

Agnati, L.F., Celani, M.F., and Fuxe, K. (1983a). Cholecystokinin peptides in vitro modulate the characteristics of the striatal 3H-N-propylnorapomorphine sites. Acta Physiol. Scand. 118, 79–81.10.1111/j.1748-1716.1983.tb07244.xSearch in Google Scholar

Agnati, L.F., Fuxe, K., Benfenati, F., Battistini, N., Harfstrand, A., Hökfelt, T., Cavicchioli, L., Tatemoto, K., and Mutt, V. (1983b). Failure of neuropeptide Y in vitro to increase the number of α2-adrenergic binding sites in membranes of medulla oblongata of the spontaneous hypertensive rat. Acta Physiol. Scand. 119, 309–312.10.1111/j.1748-1716.1983.tb07344.xSearch in Google Scholar

Agnati L.F., Fuxe K., Andersson K., Hökfelt T., Skirboll L., Benfenati F., Battistini N., and Calzà, L. (1983c). Possible functional meaning of the coexistence of monoamines and peptides in the same neurons. A study on the interactions between cholecystokinin-8 and dopamine in the brain. Receptors as Supramolecular Entities. G. Biggio, E., Costa, G.L. Gessa, and P.F. Spano, eds. (New York: Pergamon Press), pp. 61–70.10.1016/B978-0-08-029804-7.50010-XSearch in Google Scholar

Agnati, L.F., Fuxe, K., Benfenati, F., Zini, I., and Hökfelt, T. (1983d). On the functional role of coexistence of 5-HT and substance P in bulbospinal 5-HT neurons. Substance P reduces affinity and increases density of 3H-5-HT binding sites. Acta Physiol. Scand. 117, 229–301.10.1111/j.1748-1716.1983.tb07210.xSearch in Google Scholar

Agnati, L.F., Fuxe, K., Battistini, N., and Benfenati, F. (1984). Aging brain and dopamine receptors: abnormal regulation by CCK-8 of [3H]-spiperone labeled dopamine receptors in striatal membranes. Acta Physiol. Scand. 120, 465–467.10.1111/j.1748-1716.1984.tb07407.xSearch in Google Scholar

Agnati, L.F., Fuxe, K., Giardino, L., Calza, L., Zoli, M., Battistini, N., Benfenati, F., Vanderhaeghen, J.J., Guidolin, D., Ruggeri, M., et al. (1985). Evidence for cholecystokinin-dopamine receptor interactions in the central nervous system of the adult and old rat. Studies on their functional meaning. Ann. NY Acad. Sci. 448, 315–333.10.1111/j.1749-6632.1985.tb29927.xSearch in Google Scholar

Agnati, L.F., Ferrè, S., Lluis, C., Franco, R., and Fuxe, K. (2003). Molecular mechanisms and therapeutical implications of intramembrane receptor/receptor interactions among heptahelical receptors with examples from the striatopallidal GABA neurons. Pharmacol. Rev. 55, 509–550.10.1124/pr.55.3.2Search in Google Scholar

Agnati, L.F., Tarakanov, A.O., Ferrè, S., Fuxe, K., and Guidolin, D. (2005a). Receptor-receptor interactions, receptor mosaics, and basic principles of molecular network organization: possible implications for drug development. J. Mol. Neurosci. 26, 193–208.10.1385/JMN:26:2-3:193Search in Google Scholar

Agnati, L.F., Fuxe, K., and Ferré, S. (2005b). How receptor mosaics decode transmitter signals. Possible relevance of cooperativity. Trends Biochem. Sci. 30, 188–193.10.1016/j.tibs.2005.02.010Search in Google Scholar

Agnati, L.F., Fuxe, K., Torvinen, M., Genedani, S., Franco, R., Watson. S., Nussdorfer, G.G., Leo, G., and Guidolin, D. (2005c). New methods to evaluate colocalization of fluorophores in immunocytochemical preparations as exemplified by a study on A2 and D2 receptors in Chinese hamster ovary cells. J. Histochem. Cytochem. 53, 941–953.10.1369/jhc.4A6355.2005Search in Google Scholar

Agnati, L.F., Guidolin, D., Genedani, S., Ferré, S., Bigiani, A., Woods, A.S., and Fuxe, K. (2005d). How proteins come together in the plasma membrane and function in macromolecular assemblies: focus on receptor mosaics. J. Mol. Neurosci. 26, 133–154.10.1385/JMN:26:2-3:133Search in Google Scholar

Agnati, L.F., Tarakanov, A.O., and Guidolin, D. (2005e). A simple mathematical model of cooperativity in receptor mosaics based on the “symmetry rule”. BioSyst. 80, 165–173.10.1016/j.biosystems.2004.11.004Search in Google Scholar

Agnati, L.F., Leo, G., Zanardi, A., Genedani, S., Rivera, A., Fuxe, K., and Guidolin, D. (2006a). Volume transmission and wiring transmission from cellular to molecular networks: history and perspectives. Acta Physiol. 187, 329–344.10.1111/j.1748-1716.2006.01579.xSearch in Google Scholar PubMed

Agnati, L.F., Ferré, S., Genedani, S., Leo, G., Guidolin, D., Filaferro, M., Carriba, P., Casado, V., Lluis, C., Franco, R., et al. (2006b). Allosteric modulation of dopamine D2 receptors by homocysteine. J. Proteome Res. 5, 3077–3083.10.1021/pr0601382Search in Google Scholar PubMed

Agnati, L.F., Guidolin, D., and Fuxe, K. (2007a). The brain as a system of nested but partially overlapping networks. Heuristic relevance of the model for brain physiology and pathology. J. Neural. Transm. 114, 3–19.10.1007/s00702-006-0563-xSearch in Google Scholar PubMed

Agnati, L.F., Guidolin, D., Leo, G., Genedani, S., Arhem, P., Forni, A., Andreoli, N., and Fuxe, K. (2007b). Role of cooperativity in protein folding and protein mosaic assemblage relevance for protein conformational diseases. Curr. Protein Pept. Sci. 8, 460–470.10.2174/138920307782411419Search in Google Scholar PubMed

Agnati, L.F., Guidolin, D., Leo, G., and Fuxe, K. (2007c). A Boolean network modelling of receptor mosaics relevance of topology and cooperativity. J. Neural. Transm. 114, 77–92.10.1007/s00702-006-0567-6Search in Google Scholar PubMed

Agnati, L.F., Guidolin, D., Carone, C., Dam, M., Genedani, S., and Fuxe, K. (2008a). Understanding neuronal molecular networks builds on neuronal cellular network architecture. Brain Res. Rev. 58, 379–399.10.1016/j.brainresrev.2007.11.002Search in Google Scholar PubMed

Agnati, L.F., Leo, G., Genedani, S., Andreoli, N., Marcellino, D., Woods, A.S., Piron, L., Guidolin, D., and Fuxe, K. (2008b). Structural plasticity in G-protein coupled receptors as demonstrated by the allosteric actions of homocysteine and computer-assisted analysis of disordered domains. Brain Res. Rev. 58, 459–474.10.1016/j.brainresrev.2007.10.003Search in Google Scholar PubMed

Agnati, L.F., Guidolin, D., Genedani, S., Leo, G., Woods, A.S., Ferré, S., Franco, R., and Fuxe, K. (2009a). Relevance of receptor topology and allosteric modulators for the integrative functions of receptor mosaics. J. Recept. Signal Transduct. Res. 28, 543–565.Search in Google Scholar

Agnati, L.F. Fuxe, K., Woods, A.S., Genedani, S., and Guidolin, D. (2009b). Theoretical considerations on the topological organization of receptor mosaics. Curr. Protein Pept. Sci. 10, 559–569.10.2174/138920309789630606Search in Google Scholar PubMed PubMed Central

Agnati, L.F., Fuxe, K., Baluska, F., and Guidolin, D. (2009c). Implications of the ‘Energide’ concept for communication and information handling in the central nervous system. J. Neural Transm. 116, 1037–1052.10.1007/s00702-009-0193-1Search in Google Scholar PubMed

Agnati, L.F., Guidolin, D., Leo, G., Carone, C., Genedani, S., and Fuxe, K. (2010a). Receptor-receptor interactions: a novel concept in brain integration. Progr. Neurobiol. 90, 157–175.10.1016/j.pneurobio.2009.10.004Search in Google Scholar PubMed

Agnati, L.F., Guidolin, D., Vilardaga, J.P., Ciruela, F., and Fuxe, K. (2010b). On the expanding terminology in the GPCR field: the meaning of receptor mosaics and receptor heteromers. J. Recept. Signal Transduct. Res. 30, 287–303.10.3109/10799891003786226Search in Google Scholar PubMed PubMed Central

Agnati, L.F., Guidolin, D., Guescini, M., Genedani, S., and Fuxe, K. (2010c). Understanding wiring and volume transmission. Brain Res. Rev. 64, 137–159.10.1016/j.brainresrev.2010.03.003Search in Google Scholar PubMed

Agnati, L.F., Guidolin, D., Albertin, G., Trivello, E., Ciruela, F., Genedani, S., Tarakanov, A.O., and Fuxe, K. (2010d). An integrated view on the role of receptor mosaics at perisynaptic level: focus on adenosine A2A, dopamine D2, cannabinoid CB1, and metabotropic glutamate mGlu5 receptors. J. Rec. Signal. Transduct. 30, 355–369.10.3109/10799893.2010.487492Search in Google Scholar PubMed

Agnati, L.F., Guidolin, D., Leo, G., Guescini, M., Pizzi, M., Stocchi, V., Spano, P.F., Ghidoni, R., Ciruela, F., Genedani, S., et al. (2011). Possible new targets for GPCR modulation: allosteric interactions, plasma membrane domains, intercellular transfer and epigenetic mechanisms. J. Recept. Signal Transduct. 3, 315–331.10.3109/10799893.2011.599393Search in Google Scholar PubMed

Agnati, L.F., Guidolin, D., Woods, A.S., Ciruela, F., Carone, C., Vallelunga, A., Borroto-Escuela, D.O., Genedani, S., and Fuxe, K. (2013). A new interpretative paradigm for conformational protein diseases. Curr. Protein Pept. Sci. 14, 141–160.10.2174/1389203711314020006Search in Google Scholar PubMed

Agnati, L.F., Guidolin, D., Marcoli, M., Genedani, S., Borroto-Escuela, D., Maura, G., and Fuxe, K. (2014a). “Neuro-semeiotics” and “free-energy minimization” suggest a unified perspective for integrative brain actions: focus on receptor heteromers and roamer type of volume transmission. Curr. Protein Pept. Sci. 15, 703–718.10.2174/1389203715666140901112725Search in Google Scholar PubMed

Ahlquist, R.P. (1948). A study of the adrenotropic receptors. Am. J. Physiol. 153, 586–600.10.1152/ajplegacy.1948.153.3.586Search in Google Scholar

Ahlquist, R.P. (1980). Historical perspective. Classification of adrenoreceptors. J. Auton. Pharmacol. 1, 101–106.10.1111/j.1474-8673.1980.tb00445.xSearch in Google Scholar

Alexander, S.P.H., Benson, H.E., Faccenda, E., Pawson, A.J., Sharman, J.L., Spedding, M., Peters, J.A., Harmar, A.J., and CGTP Collaborators. (2013). The concise guide to pharmacology 2013/14: G protein-coupled receptors. Br. J. Pharmacol. 170, 1459–1581.10.1111/bph.12445Search in Google Scholar

Angers, S., Salahpour, A., and Bouvier, M. (2001). Biochemical and biophysical demonstration of GPCR oligomerization in mammalian cells. Life Sci. 68, 2243–2250.10.1016/S0024-3205(01)01012-8Search in Google Scholar

Anonymous. (1982). A randomized trial of propranolol in patients with acute myocardial infarction. I. Mortality results. J. Am. Med. Assoc. 247, 1707–1714.10.1001/jama.1982.03320370021023Search in Google Scholar PubMed

Azdad, K., Gall, D., Woods, A.S., Ledent, C., Ferrè, S., and Schiffmann, S.N. (2009). Dopamine D2 and adenosine A2A receptors regulate NMDA mediated excitation in accumbens neurons through A2A-D2 receptor heteromerization. Neuropsychopharmacology 34, 972–986.10.1038/npp.2008.144Search in Google Scholar PubMed PubMed Central

Becher, A. and McIlhinney, R.A. (2005). Consequences of lipid raft association on G-protein-coupled receptor function. Biochem. Soc. Symp. 72, 151–164.10.1042/bss0720151Search in Google Scholar PubMed

Bhushan, R.G., Sharma, S.K., Xie, Z., Daniels, D.J., and Portoghese, P.S. (2004). A bivalent ligand (KDN-21) reveals spinal δ and κ opioid receptors are organized as heterodimers that give rise to δ(1) and κ(2) phenotypes. Selective targeting of δ-κ heterodimers. J. Med. Chem. 47, 2969–2972.10.1021/jm0342358Search in Google Scholar PubMed

Bockaert, J. and Pin, J.P. (1999). Molecular tinkering of G protein-coupled receptors: an evolutionary success. Eur. Mol. Biol. Organ. J. 18, 1723–1729.10.1093/emboj/18.7.1723Search in Google Scholar PubMed PubMed Central

Bockaert, J., Fagni, L., Dumuis, A., and Marin, P. (2004). GPCR interacting proteins (GIP). Pharmacol. Ther. 103, 203–221.10.1016/j.pharmthera.2004.06.004Search in Google Scholar PubMed

Borroto-Escuela, D.O., Romero-Fernandez, W., Tarakanov, A.O., Gómez-Soler, M., Corrales, F., Marcellino, D., Narvaez, M., Frankowska, M., Flajolet, M., Heintz, N., et al. (2010a). Characterization of the A2AR-D2R interface: focus on the role of the C-terminal tail and the transmembrane helices. Biochem. Biophys. Res. Commun. 26, 801–807.10.1016/j.bbrc.2010.10.122Search in Google Scholar PubMed

Borroto-Escuela, D.O., Romero-Fernandez, W., Tarakanov, A.O., Marcellino, D., Ciruela, F., Agnati, L.F., and Fuxe, K. (2010b). Dopamine D2 and 5-hydroxytryptamine 5-HT2A receptors assemble into functionally interacting heteromers. Biochem. Biophys. Res. Commun. 401, 605–610.10.1016/j.bbrc.2010.09.110Search in Google Scholar PubMed

Borroto-Escuela, D.O., Tarakanov, A.O., Guidolin, D., Ciruela, F., Agnati, L.F., and Fuxe, K. (2011a). Moonlighting characteristics of G protein-coupled receptors: focus on receptor heteromers and relevance for neurodegeneration. IUBMB Life 63, 463–472.10.1002/iub.473Search in Google Scholar PubMed

Borroto-Escuela, D.O., Van Craenenbroeck, K., Romero-Fernandez, W., Guidolin, D., Woods, A.S., Rivera, A., Haegeman, G., Agnati, L.F., Tarakanov, A.O., and Fuxe, K. (2011b). Dopamine D2 and D4 receptor heteromerization and its allosteric receptor-receptor interactions. Biochem. Biophys. Res. Commun. 404, 928–934.10.1016/j.bbrc.2010.12.083Search in Google Scholar PubMed

Borroto-Escuela, D.O., Flajolet, M., Agnati, L.F., Greengard, P., and Fuxe, K. (2013a). Bioluminescence resonance energy transfer methods to study G protein-coupled receptor-receptor tyrosine kinase heteroreceptor complexes. Methods Cell Biol. 117, 141–164.10.1016/B978-0-12-408143-7.00008-6Search in Google Scholar PubMed PubMed Central

Borroto-Escuela, D.O., Romero-Fernandez, W., Garriga, P., Ciruela, F., Narvaez, M., Tarakanov, A.O., Palkovits, M., Agnati, L.F., and Fuxe, K. (2013b). G protein-coupled receptor heterodimerization in the brain. Methods Enzymol. 521, 281–294.10.1016/B978-0-12-391862-8.00015-6Search in Google Scholar PubMed

Borroto-Escuela, D.O., Brito, I., Romero-Fernandez, W., Di Palma, M., Oflijan, J., Skieterska, K., Duchou, J., Van Craenenbroeck, K., Suárez-Boomgaard, D., Rivera, A., et al. (2014). The G protein-coupled receptor heterodimer network (GPCR-HetNet) and its hub components. Int. J. Mol. Sci. 15, 8570–8590.10.3390/ijms15058570Search in Google Scholar PubMed PubMed Central

Bouvier, M. and Hébert, T.E. (2014). CrossTalk opposing view: weighing the evidence for class A GPCR dimers, the jury is still out. J. Physiol. 592, 2443–2445.10.1113/jphysiol.2014.272252Search in Google Scholar PubMed PubMed Central

Bulenger, S., Marullo, S., and Bouvier, M. (2005). Emerging role of homo- and heterodimerization in G-protein-coupled receptor biosynthesis and maturation. Trends Pharmacol. Sci. 26, 131–137.10.1016/j.tips.2005.01.004Search in Google Scholar PubMed

Chaim, B.Y., Bochnik, S., Parnas, I., and Parnas, H. (2013). Voltage affects the dissociation rate constant of the m2 muscarinic receptor. PLoS 8, e74354.Search in Google Scholar

Changeux, J.P. (2013a). The concept of allosteric interaction and its consequences for the chemistry of the brain. J. Biol. Chem. 288, 26969–26986.10.1074/jbc.X113.503375Search in Google Scholar PubMed PubMed Central

Changeux, J.P. (2013b). 50 years of allosteric interactions: the twists and turns of the models. Nat. Rev. Mol. Cell Biol. 14, 819–829.10.1038/nrm3695Search in Google Scholar

Changeux, J.P. and Edelstein, S.J. (2005). Allosteric mechanisms of signal transduction. Science 308, 1424–1428.10.1126/science.1108595Search in Google Scholar

Cheng, J., Sweredoski, M.J., and Baldi, P. (2005). Accurate prediction of protein disordered regions by mining protein structure data. Data Min. Knowl. Discov. 11, 213–222.10.1007/s10618-005-0001-ySearch in Google Scholar

Chilmonczyk, Z., Bojarski, A.J., and Sylte, I. (2014). Ligand-directed trafficking of receptor stimulus. Pharmacol. Rep. 66, 1011–1021.10.1016/j.pharep.2014.06.006Search in Google Scholar

Chini, B. and Parenti, M. (2004). G-protein coupled receptors in lipid rafts and caveolae: how, when and why do they go there? J. Mol. Endocrinol. 32, 325–338.10.1677/jme.0.0320325Search in Google Scholar

Christopoulos, A. and Kenakin, T. (2002). G protein-coupled receptor allosterism and complexing. Pharmacol. Rev. 54, 323–374.10.1124/pr.54.2.323Search in Google Scholar

Chun, L.S., Free, R.B., Doyle, T.B., Huang, X.P., Rankin, M.L., and Sibley, D.R. (2013). D1-D2 dopamine receptor synergy promotes calcium signaling via multiple mechanisms. Mol. Pharmacol. 84, 190–200.10.1124/mol.113.085175Search in Google Scholar

Ciruela, F., Burgueno, J., Casado, V., Canals, M., Marcelino, D., Goldberg, S.R., Bader, M., Fuxe, K., Agnati, L.F., Lluis, C., et al. (2004). Combining mass spectrometry and pull-down techniques for the study of receptor heteromerization. Direct epitope-epitope electrostatic interactions between adenosine A2A and dopamine D2 receptors. Anal. Chem. 76, 5354–5363.10.1021/ac049295fSearch in Google Scholar

Ciruela, F., Canela, L., Burgueno, J., Soriguera, A., Cabello, N., Canela, E.I., Casado, V., Cortes, A., Mallol, J., Woods, A.S., et al. (2005). Heptaspanning membrane receptors and cytoskeletal/scaffolding proteins: focus on adenosine, dopamine, and metabotropic glutamate receptor function. J. Mol. Neurosci. 26, 277–292.10.1385/JMN:26:2-3:277Search in Google Scholar

Cooper, D.M.F. and Tabbasum, V.G. (2014). Adenylate cyclase-centred microdomains. Biochem. J. 462, 199–213.10.1042/BJ20140560Search in Google Scholar

Czysz, A.H., Schappi, J.M., and Rasenick, M.M. (2015). Lateral diffusion of Gαs in the plasma membrane is decreased after chronic but not acute antidepressant treatment: role of lipid raft and non-raft membrane microdomains. Neuropsychopharmacology 40, 766–773.10.1038/npp.2014.256Search in Google Scholar

Daniels, D.J., Lenard, N.R., Etienne, C.L., Law, P.Y., Roerig, S.C., and Portoghese, P.S. (2005). Opioid-induced tolerance and dependence in mice is modulated by the distance between pharmacophores in a bivalent ligand series. Proc. Natl. Acad. Sci. USA 102, 19208–19213.10.1073/pnas.0506627102Search in Google Scholar

Daulat, A.M., Maurice, P., and Jockers, R. (2009). Recent methodological advances in the discovery of GPCR-associated protein complexes. Trends Pharmacol Sci. 30, 72–78.10.1016/j.tips.2008.10.009Search in Google Scholar

Dean, M.K., Higgs, C., Smith, R.E., Bywater, R.P., Snell, C.R., Scott, P.D., Upton, G.J., Howe, T.J., and Reynolds, C.A. (2001). Dimerization of G-protein-coupled receptors. J. Med. Chem. 44, 4595–4614.10.1021/jm010290+Search in Google Scholar

Deupi, X. and Kobilka, B.K. (2010). Energy landscapes as a tool to integrate GPCR structure, dynamics, and function. Physiology 25, 293–303.10.1152/physiol.00002.2010Search in Google Scholar

Devi, L.A. (2001). Heterodimerization of G-protein-coupled receptors: pharmacology, signaling and trafficking. Trends Pharmacol. Sci. 22, 532–537.10.1016/S0165-6147(00)01799-5Search in Google Scholar

Dityatev, A. and Schachner, M. (2006). The extracellular matrix and synapses. Cell Tissue Res. 326, 647654.10.1007/s00441-006-0217-1Search in Google Scholar PubMed

Dosztányi, Z., Csizmók, V., Tompa, P., and Simon, I. (2005). The pairwise energy content estimated from amino acid composition discriminates between folded and intrinsically unstructured proteins. J. Mol. Biol. 347, 827–839.10.1016/j.jmb.2005.01.071Search in Google Scholar PubMed

Dupre, D.J. and Hebert, T.E. (2006). Biosynthesis and trafficking of seven transmembrane receptor signalling complexes. Cellular Signal. 18, 1549–1559.10.1016/j.cellsig.2006.03.009Search in Google Scholar PubMed

Dziedzicka-Wasylewska, M. (2004). Brain dopamine receptors – research perspectives and potential sites of regulation. Pol. J. Pharmacol. 56, 659–671.Search in Google Scholar

Fenton, A.W. (2008). Allostery: an illustrated definition for the ‘second secret of life’. Trends Biochem. Sci. 33, 420–425.10.1016/j.tibs.2008.05.009Search in Google Scholar PubMed PubMed Central

Ferré, S., Baler, R., Bouvier, M., Caron, M.G., Devi, L.A., Durroux, T., Fuxe, K., George, S.R., Javitch, J.A., Lohse, M.J., et al. (2009). Building a new conceptual framework for receptor heteromers. Nat. Chem. Biol. 5, 131–134.10.1038/nchembio0309-131Search in Google Scholar

Ferré, S., Woods, A.S., Navarro, G., Aymerich, M., Lluís, C., and Franco, R. (2010). Calcium-mediated modulation of the quaternary structure and function of adenosine A2A-dopamine D2 receptor heteromers. Curr. Opin. Pharmacol. 10, 67–72.10.1016/j.coph.2009.10.002Search in Google Scholar

Ferré, S., Casadó, V., Devi, L.A., Filizola, M., Jockers, R., Lohse, M.J., Milligan, G., Pin, J.P., and Guitart. X. (2014). G protein-coupled receptor oligomerization revisited: functional and pharmacological perspectives. Pharmacol. Rev. 66, 413–434.10.1124/pr.113.008052Search in Google Scholar

Ferron, F., Longhi, S., Canard, B., and Karlin, D. (2006). A practical overview of protein disorder prediction methods. Proteins 65, 1–14.10.1002/prot.21075Search in Google Scholar

Fiorentini, C., Busi, C., Gorruso, E., Gotti, C., Spano, P., and Missale, C. (2008). Reciprocal regulation of dopamine D1 and D3 receptor function and trafficking by heterodimerization. Mol. Pharmacol. 74, 59–69.10.1124/mol.107.043885Search in Google Scholar

Fotiadis, D., Liang, Y., Filipek, S., Saperstein, D.A., Engel, A., and Palczewski, K. (2003). Atomic force microscopy: rhodopsin dimers in native disc membranes. Nature 421, 127–128.10.1038/421127aSearch in Google Scholar

Franco, R., Ferré, S., Agnati, L.F., Torvinen, M., Gines, S., Hillion, J., Casado, V., Lledo, P.M., Zoli, M., Lluis, C., et al. (2000). Evidence for adenosine/dopamine receptor interactions: indications for heteromerization. Neuropsychopharmacology 23, S50–S59.10.1016/S0893-133X(00)00144-5Search in Google Scholar

Franco, R., Lluis, C., Canela, E.I., Mallol, J., Agnati, L.F., Casadó, V., Ciruela, F., Ferré, S., and Fuxe, K. (2007). Receptor-receptor interactions involving adenosine A1 or dopamine D1 receptors and accessory proteins. J. Neural. Transm. 114, 93–104.10.1007/s00702-006-0566-7Search in Google Scholar PubMed

Frauenfelder, H., Parak, F., and Young, R.D. (1988). Conformational substates in proteins. Annu. Rev. Biophys. Biophys. Chem. 17, 451–479.10.1146/annurev.bb.17.060188.002315Search in Google Scholar PubMed

Frauenfelder, H., Sligar, S.G., and Wolynes, P.G. (1991). The energy landscapes and motions of proteins. Science 254, 1598–1603.10.1126/science.1749933Search in Google Scholar PubMed

Fuxe, K., Agnati, L.F., Benfenati, F., Cimmino, M., Algeri, S., Hökfelt, T., and Mutt, V. (1981). Modulation by cholecystokinins of 3H-spiroperidol binding in rat striatum: evidence for increased affinity and reduction in the number of binding sites. Acta Physiol. Scand. 113, 567–569.10.1111/j.1748-1716.1981.tb06942.xSearch in Google Scholar

Fuxe, K., Agnati, L.F., Härfstrand, A., Lundberg, J., Hökfelt, T., Calza, L., Kimmel, J., and Bernardi, P. (1982). Intracisternal administration of avian pancreatic polypeptide lowers respiration rate and enhances the clonidine induced reduction of respiration rate in α-chloralose anesthetized rats: possible interactions with an α 2-adrenergic receptor. Acta Physiol. Scand. 115, 381–384.10.1111/j.1748-1716.1982.tb07094.xSearch in Google Scholar

Fuxe, K., Agnati, L.F., Benfenati, F., Celani, M., Zini, I., Zoli, M., and Mutt, V. (1983a). Evidence for the existence of receptor-receptor interactions in the central nervous system. Studies on the regulation of monoamine receptors by neuropeptides. J. Neural. Transm. 18, 165–179.Search in Google Scholar

Fuxe, K., Agnati, L.F., Harfstrand, A., Zini, I., Tatemoto, K., Pich, E.M., Hökfelt, T., Mutt, V., and Terenius, L. (1983b). Central administration of neuropeptide Y induces hypotension bradypnea and EEG synchronization in the rat. Acta Physiol. Scand. 118, 189–192.10.1111/j.1748-1716.1983.tb07261.xSearch in Google Scholar

Fuxe, K., Agnati, L.F., Harfstrand, A., Martire, M., Goldstein, M., Grimaldi, R., Bernardi, P., Zini, I., Tatemoto, K., and Mutt, V. (1984). Evidence for a modulation by neuropeptide Y of the α-2 adrenergic transmission line in central adrenaline synapses. New possibilities for treatment of hypertensive disorders. Clin. Exp. Hypertens Part A 6, 1951–1956.10.3109/10641968409046108Search in Google Scholar

Fuxe, K. and Agnati, L.F. (1985). Receptor-receptor interactions in the central nervous system. A new integrative mechanism in synapses¯ Med. Res. Rev. 5, 441–482.10.1002/med.2610050404Search in Google Scholar

Fuxe, K., Agnati, L.F., Harfstrand, A., Janson, A.M., Neumeyer, A., Andersson, K., Ruggeri, M., Zoli, M., and Goldstein, M. (1986). Morphofunctional studies on the neuropeptide Y/adrenaline costoring terminal systems in the dorsal cardiovascular region of the medulla oblongata. Focus on receptor-receptor interactions in cotransmission. Prog. Brain Res. 68, 303–320.10.1016/S0079-6123(08)60246-0Search in Google Scholar

Fuxe, K. and Agnati, L.F. (1987a). Receptor-Receptor Interactions. A New Intramembrane Integrative Mechanism. K. Fuxe and L.F. Agnati, eds. (London, UK: Macmillan), pp. 14–18.10.1007/978-1-349-08949-9Search in Google Scholar

Fuxe, K. and Agnati, L.F. (1987b). Opening Address. Receptor-Receptor Interactions. A New Intramembrane Integrative Mechanism. K. Fuxe and L.F. Agnati, eds. (London, UK: MacMillan), pp. 14–18.10.1007/978-1-349-08949-9Search in Google Scholar

Fuxe, K., Ferré, S., Zoli, M., and Agnati, L.F. (1998). Integrated events in central dopamine transmission as analyzed at multiple levels. Evidence for intramembrane adenosine A2A/dopamine D2 and adenosine A1/dopamine D1 receptor interactions in the basal ganglia. Brain Res. Brain Res. Rev. 26, 258–273.10.1016/S0165-0173(97)00049-0Search in Google Scholar

Fuxe, K., Agnati, L.F., Jacobsen, K., Hillion, J., Canals, M., Torvinen, M., Tinner-Staines, B., Staines, W., Rosin, D., Terasmaa, A., et al. (2003). Receptor heteromerization in adenosine A2A receptor signaling: relevance for striatal function and Parkinson’s disease. Neurology 61, S19–S23.10.1212/01.WNL.0000095206.44418.5CSearch in Google Scholar PubMed

Fuxe, K., Ferrè, S., Canals, M., Torvinen, M., Terasmaa, A., Marcellino, D., Goldberg, S.R., Staines, W., Jacobsen, K.X., Lluis, C., et al. (2005). Adenosine A2A and dopamine D2 heteromeric receptor complexes and their function. J. Mol. Neurosci. 26, 209–220.10.1385/JMN:26:2-3:209Search in Google Scholar

Fuxe, K., Ferrè, S., Genedani, S., Franco, R., and Agnati, L.F. (2007a). Adenosine receptor-dopamine receptor interactions in the basal ganglia and their relevance for brain function. Physiol. Behav. 92, 210–217.10.1016/j.physbeh.2007.05.034Search in Google Scholar

Fuxe, K., Canals, M., Torvinen, M., Marcellino, D., Terasmaa, A., Genedani, S., Leo, G., Guidolin, D., Diaz-Cabiale, Z., Rivera, A., et al. (2007b). Intramembrane receptor-receptor interactions: a novel principle in molecular medicine. J. Neural. Transm. 114, 49–75.10.1007/s00702-006-0589-0Search in Google Scholar

Fuxe, K., Marcellino, D., Guidolin, D., Woods, A.S., and Agnati, L.F. (2009a). Brain receptor mosaics and their intramembrane receptor-receptor interactions: molecular integration in transmission and novel targets for drug development. J. Acupunct. Meridian. Stud. 2, 1–25.10.1016/S2005-2901(09)60011-XSearch in Google Scholar

Fuxe, K., Marcellino, D., Woods, A.S., Leo, G., Antonelli, T., Ferraro, L., Tanganelli, S., and Agnati, L.F. (2009b). Integrated signaling in heterodimers and receptor mosaics of different types of GPCRs of the forebrain: relevance for schizophrenia. J. Neural. Transm. 116, 923–939.10.1007/s00702-008-0174-9Search in Google Scholar

Fuxe, K., Borroto-Escuela, D.O., Marcellino, D., Romero-Fernandez, W., Frankowska, M., Guidolin, D., Filip, M., Ferraro, L., Woods, A.S., Tarakanov, A., et al. (2012). GPCR heteromers and their allosteric receptor-receptor interactions. Curr. Med. Chem. 19, 356–363.10.2174/092986712803414259Search in Google Scholar

Fuxe, K., Borroto-Escuela, D.O., Romero-Fernandez, W., Palkovits, M., Tarakanov, A.O., Ciruela, F., and Agnati, L.F. (2014). Moonlighting proteins and protein-protein interactions as neurotherapeutic targets in the G protein-coupled receptor field. Neuropsychopharmacology 39, 131–155.10.1038/npp.2013.242Search in Google Scholar

Fuxe, K., Guidolin, D., Agnati, L.F., and Borroto-Escuela, D.O. (2015). Dopamine heteroreceptor complexes as therapeutic targets in Parkinson’s disease. Expert. Opin. Ther. Targets 19, 377–398.10.1517/14728222.2014.981529Search in Google Scholar

Genedani, S., Guidolin, D., Leo, G., Filaferro, M., Torvinen, M., Woods, A.S., Fuxe, K., Ferré, S., and Agnati, L.F. (2005). Computer-assisted image analysis of caveolin-1 involvement in the internalization process of adenosine A2A-dopamine D2 receptor heterodimers. J. Mol. Neurosci. 26, 177–184.10.1385/JMN:26:2-3:177Search in Google Scholar

Genedani, S., Carone, C., Guidolin, D., Filaferro, M., Marcellino, D., Fuxe, K., and Agnati, L.F. (2010). Differential sensitivity of A2A and especially D2 receptor trafficking to cocaine compared with lipid rafts in cotransfected CHO cell lines. Novel actions of cocaine independent of the DA transporter. J. Mol. Neurosci. 41, 347–357.10.1007/s12031-010-9328-ySearch in Google Scholar

Gerfen, C.R. (2000). Molecular effects of dopamine on striatal-projection pathways. Trends Neurosci. 23, S64–S70.10.1016/S1471-1931(00)00019-7Search in Google Scholar

Gingrich, J.A. and Caron, M.G. (1993). Recent advances in the molecular biology of dopamine receptors. Annu. Rev. Neurosci. 16, 299–321.10.1146/annurev.ne.16.030193.001503Search in Google Scholar PubMed

Gonzàles, S., Rangel-Barajas, C., Peper, M., Lorenzo, R., Moreno, E., Ciruela, F., Borycz, J., Ortiz, J., Lluis, C., Franco, R., et al. (2012). Dopamine D4 receptor, but not the ADHD-associated D4.7 variant, forms functional heteromers with the dopamine D2S receptor in the brain. Mol. Psychiatry 17, 650–662.10.1038/mp.2011.93Search in Google Scholar PubMed PubMed Central

González-Maeso, J., Ang, R.L., Yuen, T., Chan, P., Weisstaub, N.V., Lopez- Gimenez, J.F., Zhou, M., Okawa, Y., Callado, L.F., Milligan, G., et al. (2008). Identification of a serotonin/glutamate receptor complex implicated in psychosis. Nature 452, 93–97.10.1038/nature06612Search in Google Scholar PubMed PubMed Central

Goodey, N.M. and Benkovic, S.J. (2008). Allosteric regulation and catalysis emerge via a common route. Nat. Chem. Biol. 4, 474–482.10.1038/nchembio.98Search in Google Scholar PubMed

Guidolin, D., Fuxe, K., Neri, G., Nussdorfer, G.G., and Agnati, L.F. (2007). On the role of receptor-receptor interactions and volume transmission in learning and memory. Brain Res. Rev. 55, 119–133.10.1016/j.brainresrev.2007.02.004Search in Google Scholar PubMed

Guidolin, D., Ciruela, F., Genedani, S., Guescini, M., Tortorella, C., Albertin, G., Fuxe, K., and Agnati, L.F. (2010). Bioinformatics and mathematical modelling in the study of receptor-receptor interactions and receptor oligomerization: focus on adenosine receptors. Biochim. Biophys. Acta 1808, 1267–1283.10.1016/j.bbamem.2010.09.022Search in Google Scholar PubMed

Guidolin, D., Ciruela, F., Genedani, S., Guescini, M., Tortorella, C., Albertin, G., Fuxe, K., and Agnati, L.F. (2011). Bioinformatics and mathematical modelling in the study of receptor-receptor interactions and receptor oligomerization: Focus on adenosine receptors. Biochim. Biophys. Acta Biomembr. 1808, 1267–1283.10.1016/j.bbamem.2010.09.022Search in Google Scholar

Guidolin, D., Agnati, L.F., Marcoli, M., Borroto-Escuela, D.O., and Fuxe, K. (2015). G-protein-coupled receptor type A heteromers as an emerging therapeutic target. Expert Opin. Ther. Targets 19, 265–283.10.1517/14728222.2014.981155Search in Google Scholar PubMed

Guitart, X., Navarro, G., Moreno, E., Yano, H., Cai, N.S., Sánchez-Soto, M., Kumar-Barodia, S., Naidu, Y.T., Mallol, J., Cortés, A., et al. (2014). Functional selectivity of allosteric interactions within G protein-coupled receptor oligomers: the dopamine D1–D3 receptor heterotetramer. Mol. Pharmacol. 86, 417–429.10.1124/mol.114.093096Search in Google Scholar PubMed PubMed Central

Guo, W., Urizar, E., Kralikova, M., Mobarec, J.C., Shi, L., Filizola, M., and Javitch, J.A. (2008). Dopamine D2 receptors form higher order oligomers at physiological expression levels. Eur. Mol. Biol. Organ. J. 27, 2293–2304.10.1038/emboj.2008.153Search in Google Scholar

Hasbi, A., O’Dowd, B.F., and George, S.R. (2011). Dopamine D1-D2 receptor heteromer signaling pathway in the brain: Emerging physiological relevance. Mol. Brain 4, 26.10.1186/1756-6606-4-26Search in Google Scholar

Hasbi, A., Perreault, M.L., Shen, M.Y., Zhang, L., To, R., Fan, T., Nguyen, T., Ji, X., O’Dowd, B.F., and George, S.R. (2014). A peptide targeting an interaction interface disrupts the dopamine D1-D2 receptor heteromer to block signaling and function in vitro and in vivo: effective selective antagonism. FASEB J. 28, 4806–4820.10.1096/fj.14-254037Search in Google Scholar

Hebebrand, J., Friedl, W., and Propping, P. (1988). The concept of isoreceptors: application to the nicotinic acetylcholine receptor and the γ-aminobutyric acidA/benzodiazepine receptor complex. J. Neural. Transm. 71, 1–9.10.1007/BF01259405Search in Google Scholar

Hiller, C., Kühhorn, J., and Gmeiner, P. (2013). Class A G-protein-coupled receptor(GPCR) dimers and bivalent ligands. J. Med. Chem. 56, 6542–6559.10.1021/jm4004335Search in Google Scholar

Hilser, V.J., Dowdy, D., Oas, T.G., and Freire, E. (1998). The structural distribution of cooperative interactions in proteins: analysis of the native state ensemble. Proc. Natl. Acad. Sci. USA 95, 9903–9908.10.1073/pnas.95.17.9903Search in Google Scholar

Hilser, V.J., García-Moreno, E.B., Oas, T.G., Kapp, G., and Whitten, S.T. (2006). A statistical thermodynamic model of the protein ensemble. Chem. Rev. 106, 1545–1558.10.1021/cr040423+Search in Google Scholar

Hilser, V.J. and Thompson, E.B. (2007). Intrinsic disorder as a mechanism to optimize allosteric coupling in proteins. Proc. Natl. Acad. Sci. USA 104, 8311–8315.10.1073/pnas.0700329104Search in Google Scholar

Hökfelt, T., Lundberg, J.M., Tatemoto, K., Mutt, V., Terenius, L., Polak, J., Bloom, S., Sasek, C., Elde, R., and Goldstein, M. (1983). Neuropeptide Y (NPY)- and FMRFamide neuropeptide-like immunoreactivities in catecholamine neurons of the rat medulla oblongata. Acta Phys. Scand. 117, 315–318.10.1111/j.1748-1716.1983.tb07214.xSearch in Google Scholar

Hökfelt, T., Holets, V.R., Staines, W., Meister, B., Melander, T., Schalling, M., Schultzberg, M., Freedman, J., Björklund, H., Olson, L., et al. (1986). Coexistence of neuronal messengers–an overview. Progr. Brain Res. 68, 33–70.10.1016/S0079-6123(08)60230-7Search in Google Scholar

Hökfelt, T., Millhorn, D., Seroogy, K., Tsuruo, Y., Ceccatelli, S., Lindh, B., Meister, B., Melander, T., Schalling, M., Bartfai, T., et al. (1987). Coexistence of peptides with classical neurotransmitters. Experientia 43, 768–780.10.1007/BF01945354Search in Google Scholar PubMed

Huang, Y.J., Acton, T.B., and Montelione, G.T. (2014). DisMeta-A meta server for construct design and optimization. Methods Mol. Biol. 1091, 3–16.10.1007/978-1-62703-691-7_1Search in Google Scholar PubMed PubMed Central

Jackson, J.N., Wang, H.Y.J., and Woods, A.S. (2005). A study of the fragmentation patterns of the phosphate-arginine noncovalent bond. J. Proteome. Res. 4, 2360–2363.10.1021/pr050261dSearch in Google Scholar PubMed

Jackson, J.N., Wang, H.Y.J., Yergey, A., and Woods, A.S. (2006). Phosphate stabilization of intermolecular interactions. J. Proteome. Res. 5, 122–126.10.1021/pr0503578Search in Google Scholar PubMed PubMed Central

Ji, T.H., Grossmann, M., and Ji, I. (1998). G protein-coupled receptors. I. Diversity of receptor-ligand interactions. J. Biol. Chem. 273, 17299–17302.10.1074/jbc.273.28.17299Search in Google Scholar PubMed

Kenakin, T. (2002). Drug efficacy at G protein-coupled receptors. Annu. Rev. Pharmacol. Toxicol. 42, 349–379.10.1146/annurev.pharmtox.42.091401.113012Search in Google Scholar PubMed

Kenakin, T. (2010). G protein coupled receptors as allosteric proteins and the role of allosteric modulators. J. Recept. Signal Transduct Res. 30, 313–321.10.3109/10799893.2010.503964Search in Google Scholar PubMed

Kenakin, T. and Miller, L.J. (2010). Seven transmembrane receptors as shapeshifting proteins: the impact of allosteric modulation and functional selectivity on new drug discovery. Pharmacol. Rev. 62, 265–304.10.1124/pr.108.000992Search in Google Scholar PubMed PubMed Central

Kenakin, T., Agnati, L.F., Caron, M., Fredholm, B., Guidolin, D., Kobilka, B., Lefkowitz, R.W., Lohse, M., Woods, A.S., and Fuxe, K. (2010). International Workshop at the Nobel Forum, Karolinska Institutet on G protein-coupled receptors: finding the words to describe monomers, oligomers, and their molecular mechanisms and defining their meaning. Can a consensus be reached? J. Recept. Signal Transduct. Res. 30, 284–286.10.3109/10799893.2010.512438Search in Google Scholar PubMed

Krissinel, E. and Henrick, K. (2007). Inference of macromolecular assemblies from crystalline state. J. Mol. Biol. 372, 774–797.10.1016/j.jmb.2007.05.022Search in Google Scholar PubMed

LaHoste, G.J., Swanson, J.M., Wigal, S.B., Glabe, C., Wigal, T., King, N., and Kennedy, J.L. (1996). Dopamine D4 receptor gene polymorphism is associated with attention deficit hyperactivity disorder. Mol. Psychiatry 1, 121–124.Search in Google Scholar

Lambert, N.A. and Javitch, J.A. (2014). CrossTalk opposing view: weighing the evidence for class A GPCR dimers, the jury is still out. J. Physiol. 592, 2443–2445.10.1113/jphysiol.2014.272997Search in Google Scholar PubMed PubMed Central

Lee, S.P., O’Dowd, B.F., and George, S.R. (2003). Homo- and hetero-oligomerization of G protein-coupled receptors. Life Sci. 74, 173–180.10.1016/j.lfs.2003.09.028Search in Google Scholar PubMed

Lee, S.P., So, C.H., Rashid, A.J., Varghese, G., Cheng, R., Lanca, A.J., O’Dowd, B.F., and George, S.R. (2004). Dopamine D1 and D2 receptor coactivation generates a novel phospholipase C-mediated calcium signal. J. Biol. Chem. 279, 35671–35678.10.1074/jbc.M401923200Search in Google Scholar PubMed

Lefkowitz, R.J. and Shenoym S.K. (2005). Transduction of receptor signals by β-arrestins. Science 308, 512–517.10.1126/science.1109237Search in Google Scholar PubMed

Levant, B. (1997). The D3 dopamine receptor: neurobiology and potential clinical relevance. Pharmacol. Rev. 3, 231–252.Search in Google Scholar

Linding, R., Jensen, L.J., Diella, F., Bork, P., Gibson, T.J., and Russell, R.B. (2003a). Protein disorder prediction: implications for structural proteomics. Structure 11, 1453–1459.10.1016/j.str.2003.10.002Search in Google Scholar PubMed

Linding, R., Russell, R.B., Neduvam, V., and Gibsonm, T.J. (2003b). GlobPlot: Exploring protein sequences for globularity and disorder. Nucleic Acids Res. 31, 3701–3708.10.1093/nar/gkg519Search in Google Scholar PubMed PubMed Central

Little, K.D., Hemler, M.E., and Stipp, C.S. (2004). Dynamic regulation of a GPCR-tetraspanin-G protein complex on intact cells: central role of CD81 in facilitating GPR56-Gα q/11 association. Mol. Biol. Cell. 15, 2375–2387.10.1091/mbc.e03-12-0886Search in Google Scholar PubMed PubMed Central

Liu, J., Perumal, N.B., Oldfield, C.J., Su, E.W., Uversky, V.N., and Dunker, A.K. (2006). Intrinsic disorder in transcription factors. Biochemistry 45, 6873–6888.10.1021/bi0602718Search in Google Scholar PubMed PubMed Central

Lohse, M.J., Benovic, J.L., Codina, J., Caron, M.G., and Lefkowitz, R.J. (1990). β-Arrestin: a protein that regulates β-adrenergic receptor function. Science 248, 547–1550.10.1126/science.2163110Search in Google Scholar PubMed

Łukasiewicz, S., Polit, A., Kędracka-Krok, S., Wędzony, K., Maćkowiak, M., and Dziedzicka-Wasylewska, M. (2010). Hetero-dimerization of serotonin 5-HT2A and dopamine D2 receptors. Biochim. Biophys. Acta Mol. Cell. Res. 1803, 1347–1358.10.1016/j.bbamcr.2010.08.010Search in Google Scholar PubMed

Lyskov, S., Chou, F.C., Conchúir, S.Ó., Der, B.S., Drew, K., Kuroda, D., Xu, J., Weitzner, B.D., Renfrew, P.D., Sripakdeevong, P., et al. (2013). Serverification of molecular modeling applications: the Rosetta Online Server That Includes Everyone (ROSIE). PLoS One 8, e63906.10.1371/journal.pone.0063906Search in Google Scholar PubMed PubMed Central

Magalhaes, A.C., Dunn, H., and Ferguson, S.S.G. (2012). Regulation of GPCR activity, trafficking and localization by GPCR-interacting proteins. Br. J. Pharmacol. 165, 1717–1736.10.1111/j.1476-5381.2011.01552.xSearch in Google Scholar PubMed PubMed Central

Mahaut-Smith, M.P., Martinez-Pinna, J., and Gurung, I.S. (2008). A role for membrane potential in regulating GPCRs? Trends Pharmacol. Sci. 29, 421–429.Search in Google Scholar

Marcellino, D., Ferrè, S., Casado, V., Corte, A., Le Foll, B., Mazzola, C., Drago, F., Saur, O., Stark, H., Soriano, A., et al. (2008). Identification of dopamine D1-D3 receptor heteromers. Indications for a role of synergistic D1-D3 receptor interactions in the striatum. J. Biol. Chem. 283, 26016–26025.10.1074/jbc.M710349200Search in Google Scholar PubMed PubMed Central

Maurice, P., Guillaume, J.L., Benleulmi-Chaachoua, A., Daulat, A.M., Kamal, M., and Jockers, R. (2011). 11-GPCR-interacting proteins, major players of GPCR function. Adv. Pharmacol. 62, 349–380.10.1016/B978-0-12-385952-5.00001-4Search in Google Scholar PubMed

Missale, C., Nash, S.R., Robinson, S.W., Jaber, M., and Caron, M.G. (1998). Dopamine receptors: from structure to function. Physiol. Rev. 78, 189–225.10.1152/physrev.1998.78.1.189Search in Google Scholar PubMed

Monod, J. (1979). Chance and Necessity: An Essay on the Natural Philosophy of Modern Biology (Glasgow, UK: William Collins Sons & Co. Ltd.).Search in Google Scholar

Motlagh, H.N., Wrabl, J.O., Li, J., and Hilser, V.J. (2014). The ensemble nature of allostery. Nature 508, 331–339.10.1038/nature13001Search in Google Scholar PubMed PubMed Central

Mukherjee, S. and Zhangm, Y. (2011). Protein-protein complex structure prediction by multimeric threading and template recombination. Structure 19, 955–966.10.1016/j.str.2011.04.006Search in Google Scholar PubMed PubMed Central

Navarro, G., Aymerich, M.S., Marcellino, D., Cortés, A., Casadó, V., Mallol, J., Canela, E.I., Agnati, L.F., Woods, A.S., Fuxe, K., et al. (2009). Interactions between calmodulin, adenosine A2A, and dopamine D2 receptors. J. Biol. Chem. 284, 28058–28068.10.1074/jbc.M109.034231Search in Google Scholar PubMed PubMed Central

Navarro, G., Ferré, S., Cordomi, A., Moreno, E., Mallol, J., Casadó, V., Cortés, A., Hoffmann, H., Ortiz, J., Canela, E.I., et al. (2010). Interactions between intracellular domains as key determinants of the quaternary structure and function of receptor heteromers. J. Biol. Chem. 285, 27346–27359.10.1074/jbc.M110.115634Search in Google Scholar PubMed PubMed Central

Negro, A., Dodge-Kafka, K., and Kapiloff, M.S. (2008). Signalosomes as therapeutic targets. Prog. Pediatr. Cardiol. 25, 51–56.10.1016/j.ppedcard.2007.11.012Search in Google Scholar PubMed PubMed Central

Nemoto, W. and Toh, H. (2005). Prediction of interfaces for oligomerization of G-protein coupled receptors. Proteins 58, 644–660.10.1002/prot.20332Search in Google Scholar

Nimchinsky, E.A., Hof, P.R., Janssen, W.G.M., Morrison, J.H., and Schmaussi, C. (1997). Expression of dopamine D3 receptor dimers and tetramers in brain and in transfected cells. J. Biol. Chem. 272, 29229–29237.10.1074/jbc.272.46.29229Search in Google Scholar

Nussinov, R. (2013). The spatial structure of cell signaling systems. Phys. Biol. 10.10.1088/1478-3975/10/4/045004Search in Google Scholar

Nussinov, R. and Tsai, C.J. (2013). Allostery in disease and in drug discovery. Cell 153, 293–305.10.1016/j.cell.2013.03.034Search in Google Scholar

O’Dowd, B.F., Ji, X., Nguyen, T., and George, S.R. (2012). Two amino acids in each of D1 and D2 dopamine receptor cytoplasmic regions are involved in D1-D2 heteromer formation. Biochem. Biophys. Res. Commun. 417, 23–28.10.1016/j.bbrc.2011.11.027Search in Google Scholar

Oldham, W.M. and Hamm, H.E. (2008). Heterotrimeric G protein activation by G protein-coupled receptors. Nat. Rev. Mol. Cell Biol. 9, 60–71.10.1038/nrm2299Search in Google Scholar

Overton, M.C. and Blumer, K.J. (2000). G protein coupled receptors function as oligomers in vivo. Curr. Biol. 10, 341–344.10.1016/S0960-9822(00)00386-9Search in Google Scholar

Patel, H.H., Murray, F., and Insel, P.A. (2008). G-protein-coupled receptor-signaling components in membrane raft and caveolae microdomains. Handb. Exp. Pharmacol. 186, 167–184.10.1007/978-3-540-72843-6_7Search in Google Scholar PubMed

Pauling, L. (1953). Protein interactions: aggregation of globular proteins. Discuss. Faraday Soc. 13, 170–176.10.1039/df9531300170Search in Google Scholar

Pei, L., Li, S., Wang, M., Diwan, M., Anisman, H., Fletcher, P.J., Nobrega, J.N., and Liu, F. (2010). Uncoupling the dopamine D1-D2 receptor complex exerts antidepressant-like effects. Nat. Med. 16, 1393–1395.10.1038/nm.2263Search in Google Scholar PubMed

Pierce, K.L., Premont, R.T., and Lefkowitz, R.J. (2002). Seven-transmembrane receptors. Nature Rev. Mol. Cell Biol. 3, 639–650.10.1038/nrm908Search in Google Scholar PubMed

Platania, C.B.M., Salomone, S., Leggio, G.M., Drago, F., and Bucolo, C. (2012). Homology modeling of dopamine D2 and D3 receptors: molecular dynamics refinement and docking evaluation. PLoS One 7, e44316.10.1371/journal.pone.0044316Search in Google Scholar PubMed PubMed Central

Portoghese, P.S. (2001). From models to molecules: opioid receptor dimers, bivalent ligands, and selective opioid receptor probes. J. Med. Chem. 44, 2259–2269.10.1021/jm010158+Search in Google Scholar PubMed

Prilusky, J., Felder, C.E., Zeev-Ben-Mordehai, T., Rydberg, E.H., Man, O., Beckmann, J.S., Silman, I., and Sussman, J.L. (2005). FoldIndex: a simple tool to predict whether a given protein sequence is intrinsically unfolded. Bioinformatics 21, 3435–3458.10.1093/bioinformatics/bti537Search in Google Scholar PubMed

Pytliak, M., Vargová, V., Mechírová, V., and Felšöci, M. (2011). Serotonin receptors – from molecular biology to clinical applications. Physiol. Res. 60, 15–25.10.33549/physiolres.931903Search in Google Scholar PubMed

Quirke, V. (2006). Putting theory into practice: James Black, receptor theory and the development of the beta-blockers at ICI, 1958–1978. Med Hist. 50, 69–92.10.1017/S0025727300009455Search in Google Scholar PubMed PubMed Central

Rankin, M.L., Hazelwood, L.A., Free, R.B., Namkung, Y., Rex, E.B., Roof, R.A., and Sibley, D.R. (2010). Molecular pharmacology of the dopamine receptors, in Dopamine Handbook. L.L. Iversen, S.B. Dunnett, S.D. Iversen, and A. Bjorklund, eds. (NY, USA: Oxford University Press), pp. 63–87.Search in Google Scholar

Rashid, A.J., So, C.H., Kong, M.M.C., Furtak, T., El-Ghundi, M., Cheng, R., O’Dowd, B.F., and George, S.R. (2007). D1-D2 dopamine receptor heterooligomers with unique pharmacology are coupled to rapid activation of Gq/11 in the striatum. Proc. Natl. Acad. Sci. USA 104, 654–659.10.1073/pnas.0604049104Search in Google Scholar PubMed PubMed Central

Reiter, E. and Lefkowitz, R.J. (2006). GRKs and b-arrestins: roles in receptor silencing, trafficking and signaling. Trends Endocrinol. Metab. 17, 159–165.10.1016/j.tem.2006.03.008Search in Google Scholar PubMed

Rinne, A., Birk, A., and Bunemann, M. (2013). Voltage regulates adrenergic receptor function. Proc. Natl. Acad. Sci. USA 110, 1536–1541.10.1073/pnas.1212656110Search in Google Scholar PubMed PubMed Central

Ritter, S.L. and Hall, R.A. (2009). Fine-tuning of GPCR activity by receptor-interacting proteins. Nat. Rev. Mol. Cell Biol. 10, 819–830.10.1038/nrm2803Search in Google Scholar PubMed PubMed Central

Rocheville, M., Lange, D.C., Kumar, U., Patel, S.C., Patel, R.C., and Patel, Y.C. (2000). Receptors for dopamine and somatostatin: formation of hetero-oligomers with enhanced functional activity. Science 288, 154–157.10.1126/science.288.5463.154Search in Google Scholar

Rondou, P., Haegeman, G., and Van Craenenbroeck, K. (2010). The dopamine D4 receptor: biochemical and signalling properties. Cell. Mol. Life Sci. 67, 1971–1986.10.1007/s00018-010-0293-ySearch in Google Scholar

Rudolph, U. and Knoflach, F. (2011). Beyond classical benzodiazepines: novel therapeutic potential of GABAA receptor subtypes Nat. Rev. Drug Discov. 10, 685–697.10.1038/nrd3502Search in Google Scholar

Sahlholm, K., Barchad-Avitzur, O., Marcellino, D., Gómez-Soler, M., Fuxe, K., Ciruela, F., and Arhem, P. (2011). Agonist-specific voltage sensitivity at the dopamine D2S receptor – molecular determinants and relevance to therapeutic ligands. Neuropharmacology 61, 937–949.10.1016/j.neuropharm.2011.06.022Search in Google Scholar

Scarselli, M., Novi, F., Schallmach, E., Lin, R., Baragli, A., Colzi, A., Griffon, N., Corsini, G.U., Sokoloff, P., Levenson, R., et al. (2001). D2/D3 dopamine receptor heterodimers exhibit unique functional properties. J. Biol. Chem. 276, 30308–30314.10.1074/jbc.M102297200Search in Google Scholar

Seeman, P. (2006). Targeting the dopamine D2 receptor in schizophrenia. Expert. Opin. Ther. Targets 10, 515–531.10.1517/14728222.10.4.515Search in Google Scholar

Shenoy, S.K. and Lefkowitz, R.J. (2011). β-arrestin-mediated receptor trafficking and signal transduction. TiPS. 32, 521–533.10.1016/j.tips.2011.05.002Search in Google Scholar

Shpakov, A.O. (2011). Signal protein-derived peptides as functional probes and regulators of intracellular signaling. J. Amino Acids 2011, 656051.10.4061/2011/656051Search in Google Scholar

Sibley, D.R. and Monsma, F.J., Jr. (1992). Molecular biology of dopamine receptors. Trends Pharmacol. Sci. 13, 61–69.10.1016/0165-6147(92)90025-2Search in Google Scholar

Skieterska, K., Duchou, J., Lintermans, B., and Van Craenenbroeck, K. (2013). Detection of G protein-coupled receptor (GPCR) dimerization by coimmunoprecipitation. Methods Cell Biol. 117, 323–340.10.1016/B978-0-12-408143-7.00017-7Search in Google Scholar PubMed

So, C.H., Verma, V., Alijaniaram, M., Cheng, R., Rashid, A.J., O’Dowd, B.F., and George, S.R. (2009). Calcium signaling by dopamine D5 receptor and D5-D2 receptor heterooligomers occurs by a mechanism distinct from that for dopamine D1-D2 receptor hetero-oligomers. Mol. Pharmacol. 75, 843–854.10.1124/mol.108.051805Search in Google Scholar

Sokoloff, P., Diaz, J., Le Foll, B., Guillin, O., Leriche, L., Bezard, E., and Gross, C. (2006). The dopamine D3 receptor: a therapeutic target for the treatment of neuropsychiatric disorders. CNS Neurol. Disord. Drug Targets 5, 25–43.10.2174/187152706784111551Search in Google Scholar

Strange, P.G. (2005). Oligomers of D2 dopamine receptors: evidence from ligand binding. J. Mol. Neurosci. 26, 155–160.10.1385/JMN:26:2-3:155Search in Google Scholar

Suzuki, M., Hurd, Y.L., Sokoloff, P., Schwartz, J.C., and Sedvall, G. (1998). D3 dopamine receptor mRNA is widely expressed in the human brain. Brain Res. 779, 58–74.10.1016/S0006-8993(97)01078-0Search in Google Scholar

Tovo-Rodrigues, L., Roux, A., Hutz, M.H., Rohde, L.A., and Woods, A.S. (2014). Functional characterization of G-protein-coupled receptors: a bioinformatics approach. Neuroscience 277, 764–779.10.1016/j.neuroscience.2014.06.049Search in Google Scholar

Trifilieff, P., Rives, M.L., Urizar, E., Piskorowski, R.A., Vishwasrao, H.D., Castrillon, J., Schmauss, C., Slättman, M., Gullberg, M., and Javitch, J.A. (2011). Detection of antigen interactions ex vivo by proximity ligation assay: endogenous dopamine D2-adenosine A2A receptor complexes in the striatum. Biotechniques 51, 111–118.10.2144/000113719Search in Google Scholar

Vallone, D., Picetti, R., and Borrelli, E. (2000). Structure and function of dopamine receptors. Neurosci. Biobehav. Rev. 24, 125–132.10.1016/S0149-7634(99)00063-9Search in Google Scholar

Venkatakrishnan, A.J., Deupi, X., Lebon, G., Tate, C.G., Schertler, G.F., and Babu, M.M. (2013). Molecular signatures of G-protein-coupled receptors. Nature 494, 185–194.10.1038/nature11896Search in Google Scholar

Vizi, E.S. (2000). Role of high-affinity receptors and membrane transporters in nonsynaptic communication and drug action in the central nervous system. Pharmacol. Rev. 52, 63–89.Search in Google Scholar

von Zastrow, M. and Kobilka, B.K. (1994). Antagonist-dependent and -independent steps in the mechanism of adrenergic receptor internalization. J. Biol. Chem. 269, 18448–18452.10.1016/S0021-9258(17)32329-3Search in Google Scholar

Vucetic, S., Brown, C.J., Dunker, A.K., and Obradovic, Z. (2003). Flavors of protein disorder. Proteins 52, 573–584.10.1002/prot.10437Search in Google Scholar

Wang, E., Dingm, Y.C., Flodman, P., Kidd, J.R., Kidd, K.K., Grady, D.L., Ryder, O.A., Spence, M.A., Swanson, J.M., and. Moyzis, R.K. (2004). The genetic architecture of selection at the human dopamine receptor D4 (DRD4) gene locus. Am. J. Hum. Genet. 74, 931–944.10.1086/420854Search in Google Scholar

Ward, J.J., Sodhi, J.S., McGuffin, L.J., Buxton, B.F., and Jones, D.T. (2004). Prediction and functional analysis of native disorder in proteins from the three kingdoms of life. J. Mol. Biol. 337, 635–645.10.1016/j.jmb.2004.02.002Search in Google Scholar

Woods, A.S., Ciruela, F., Fuxe, K., Agnati, L.F., Lluis, C., Franco, R., and Ferré, S. (2005). Role of electrostatic interaction in receptor-receptor heteromerization. J. Mol. Neurosci. 26, 125–132.10.1385/JMN:26:2-3:125Search in Google Scholar

Woods, A.S. and Jackson, S.N. (2013). How adenylate cyclase choreographs the pas de deux of the receptors heteromerization dance. Neuroscience 238, 335–344.10.1016/j.neuroscience.2013.02.006Search in Google Scholar

Wu, H., Wacker, D., Mileni, M., Katritch, V., Han, G.W., Vardy, E., Liu, W., Thompson, A.A., Huang, X.P., Carrol, F.I., et al. (2012). Structure of the human κ-opioid receptor in complex with JDTic. Nature 485, 327–332.10.1038/nature10939Search in Google Scholar

Xie, Z., Lee, S.P., O’Dowd, B.F., and George, S.R. (1999). Serotonin 5-HT1B and 5-HT1D receptors form homodimers when expressed alone and heterodimers when co-expressed. FEBS Lett. 456, 63–67.10.1016/S0014-5793(99)00918-7Search in Google Scholar

Xu, R., Hranilovic, D., Fetsko, L.A., Bucanm, M., and Wangm, Y. (2002). Dopamine D2S and D2L receptors may differentially contribute to the actions of antipsychotic and psychotic agents in mice. Mol. Psychiatry 7, 1075–1082.10.1038/sj.mp.4001145Search in Google Scholar

Yang, Z.R., Thomson, R., McNeil, P., and Esnouf, R.M. (2005). RONN: the bio-basis function neural network technique applied to the detection of natively disordered regions in proteins. Bioinformatics 21, 3369–3376.10.1093/bioinformatics/bti534Search in Google Scholar

Yekkirala, A.S., Kalyuzhny, A.E., and Portoghese, P.S. (2013). An immunocytochemical-derived correlate for evaluating the bridging of heteromeric μ-δ opioid protomers by bivalent ligands. ACS Chem. Biol. 8, 1412–1416.10.1021/cb400113dSearch in Google Scholar

Zawarynski, P., Tallerico, T., Seeman, P., Lee, S.P., O’Dowd, B.F., and George, S.R. (1998). Dopamine D2 receptor dimers in human and rat brain FEBS Lett. 441, 383–386.Search in Google Scholar

Zeng, F. and Wess, J. (2000). Molecular aspects of muscarinic receptor dimerization. Neuropsychopharmacology 23, S19–S31.10.1016/S0893-133X(00)00146-9Search in Google Scholar