Which factor is a possible cause for constipation in a patient who is prescribed enteral tube feeding?

  1. Mutlu GM, Mutlu EA, Factor P. Prevention and treatment of gastrointestinal complications in patients on mechanical ventilation. Am J Respir Med. 2003;2:395–411.

    PubMed  Article  Google Scholar 

  2. McClave SA, Martindale RG, Vanek VW, et al. Guidelines for the provision and assessment of nutrition support therapy in the adult critically ill patient: Society of Critical Care Medicine (SCCM) and American Society for Parenteral and Enteral Nutrition (A.S.P.E.N.). JPEN J Parenter Enteral Nutr. 2009;33:277–316.

    PubMed  Article  Google Scholar 

  3. Minard G, Kudsk KA, Melton S, et al. Early versus delayed feeding with an immune-enhancing diet in patients with severe head injuries. J Parenter Enter Nutr. 2000;24:145–9.

    CAS  Article  Google Scholar 

  4. Dvorak MF, Noonan VK, Belanger L, et al. Early versus late enteral feeding in patients with acute cervical spinal cord injury: a pilot study. Spine. 2004;29:E175–80.

    PubMed  Article  Google Scholar 

  5. Kompan L, Vidmar G, Spindler-Vesel A, et al. Is early enteral nutrition a risk factor for gastric intolerance and pneumonia? Clin Nutr. 2004;23:527–32.

    PubMed  Article  Google Scholar 

  6. Malhotra A, Mathur AK, Gupta S. Early enteral nutrition after surgical treatment of gut perforations: a prospective randomised study. J Postgrad Med. 2004;50:102–6.

    PubMed  Google Scholar 

  7. Peck MD, Kessler M, Cairns BA, et al. Early enteral nutrition does not decrease hypermetabolism associated with burn injury. J Trauma. 2004;57:1143–9.

    PubMed  Article  Google Scholar 

  8. The Committee on Japanese Guidelines for Nutrition Support Therapy in the Adult and Pediatric Critically Ill Patients, Japanese Society of Intensive Care Medicine. Japanese Guidel ines for Nutrition Support Therapy in the Adult and Pediatric Critically Ill Patients. J Jpn Soc Intensive Care Med 2016;23:185–281 (in Japanese).

  9. Marik PE. Enteral nutrition in the critically ill: myths and misconceptions. Crit Care Med. 2014;42:962–9.

    CAS  PubMed  Article  Google Scholar 

  10. Taylor SJ, Fettes SB, Jewkes C, et al. Prospective, randomized, controlled trial to determine the effect of early enhanced enteral nutrition on clinical outcome in mechanically ventilated patients suffering head injury. Crit Care Med. 1999;27:2525–31.

    CAS  PubMed  Article  Google Scholar 

  11. Pinilla JC, Samphire J, Arnold C, et al. Comparison of gastrointestinal tolerance to two enteral feeding protocols in critically ill patients: a prospective, randomized controlled trial. J Parenter Enter Nutr. 2001;25:81–6.

    CAS  Article  Google Scholar 

  12. Montejo JC, Miñambres E, Bordejé L, et al. Gastric residual volume during enteral nutrition in ICU patients: the REGANE study. Intensive Care Med. 2010;36:1386–93.

    CAS  PubMed  Article  Google Scholar 

  13. Tarling MM, Toner CC, Withington PS, et al. A model of gastric emptying using paracetamol absorption in intensive care patients. Intensive Care Med. 1997;23:256–60.

    CAS  PubMed  Article  Google Scholar 

  14. Landzinski J, Kiser TH, Fish DN, et al. Gastric motility function in critically ill patients tolerant vs intolerant to gastric nutrition. J Parenter Enter Nutr. 2008;32:45–50.

    Article  Google Scholar 

  15. Cohen J, Aharon A, Singer P. The paracetamol absorption test: a useful addition to the enteral nutrition algorithm? Clin Nutr. 2000;19:233–6.

    CAS  PubMed  Article  Google Scholar 

  16. McClave SA, Lukan JK, Stefater JA, et al. Poor validity of residual volumes as a marker for risk of aspiration in critically ill patients. Crit Care Med. 2005;33:324–30.

    PubMed  Article  Google Scholar 

  17. McClave SA, DeMeo MT, DeLegge MH, et al. North American summit on aspiration in the critically ill patient: consensus statement. J Parenter Enter Nutr. 2002;26:S80–5.

    Article  Google Scholar 

  18. Reignier J, Mercier E, Le Gouge A, et al. Effect of not monitoring residual gastric volume on risk of ventilator- associated pneumonia in adults receiving mechanical ventilation and early enteral feeding: a randomized controlled trial. JAMA. 2013;309:249–56.

    CAS  PubMed  Article  Google Scholar 

  19. Poulard F, Dimet J, Martin-Lefevre L, et al. Impact of not measuring residual gastric volume in mechanically ventilated patients receiving early enteral feeding: a prospective before-after study. JPEN J Parenter Enteral Nutr. 2010;34:125–30.

    PubMed  Article  Google Scholar 

  20. Powell KS, Marcuard SP, Farrior ES, et al. Aspirating gastric residuals causes occlusion of small-bore feeding tubes. JPEN J Parenter Enteral Nutr. 1993;17:243–6.

    CAS  PubMed  Article  Google Scholar 

  21. McClave SA, Taylor BE, Martindale RG, et al. Guidelines for the Provision and Assessment of Nutrition Support Therapy in the Adult Critically Ill Patient: Society of Critical Care Medicine (SCCM) and American Society for Parenteral and Enteral Nutrition (A.S.P.E.N.). JPEN J Parenter Enteral Nutr. 2016;40:159–211.

    CAS  PubMed  Article  Google Scholar 

  22. Metheny NA, Stewart BJ, Mills AC. Blind insertion of feeding tubes in intensive care units: a national survey. Am J Crit Care. 2012;21:352–60.

    PubMed  Article  Google Scholar 

  23. McClave SA, Sexton LK, Spain DA, et al. Enteral tube feeding in the intensive care unit: factors impeding adequate delivery. Crit Care Med. 1999;27:1252–6.

    CAS  PubMed  Article  Google Scholar 

  24. Martindale RG, Maerz LL. Management of perioperative nutrition support. Curr Opin Crit Care. 2006;12:290–4.

    PubMed  Article  Google Scholar 

  25. Kozar RA, McQuiggan MM, Moore EE, et al. Postinjury enteral tolerance is reliably achieved by a standardized protocol. J Surg Res. 2002;104:70–5.

    PubMed  Article  Google Scholar 

  26. Barr J, Hecht M, Flavin KE, et al. Outcomes in critically ill patients before and after the implementation of an evidence-based nutritional management protocol. Chest. 2004;125:1446–57.

    PubMed  Article  Google Scholar 

  27. Martin CM, Doig GS, Heyland DK, et al. Southwestern Ontario Critical Care Research Network. Multicentre, cluster-randomized clinical trial of algorithms for critical-care enteral and parenteral therapy (ACCEPT). CMAJ. 2004;170:197–204.

    PubMed  PubMed Central  Google Scholar 

  28. Adam S, Batson S. A study of problems associated with the delivery of enteral feed in critically ill patients in five ICUs in the UK. Intensive Care Med. 1997;23:261–6.

    CAS  PubMed  Article  Google Scholar 

  29. Spain DA, McClave SA, Sexton LK, et al. Infusion protocol improves delivery of enteral tube feeding in the critical care unit. JPEN J Parenter Enteral Nutr. 1999;23:288–92.

    CAS  PubMed  Article  Google Scholar 

  30. Heyland DK, Stephens KE, Day AG, et al. The success of enteral nutrition and ICU-acquired infections: a multicenter observational study. Clin Nutr. 2011;30:148–55.

    PubMed  Article  Google Scholar 

  31. Rice TW, Mogan S, Hays MA, et al. Randomized trial of initial trophic versus full-energy enteral nutrition in mechanically ventilated patients with acute respiratory failure. Crit Care Med. 2011;39:967–74.

    PubMed  PubMed Central  Article  Google Scholar 

  32. National Heart, Lung, and Blood Institute Acute Respiratory Distress Syndrome (ARDS) Clinical Trials Network, Rice TW, Wheeler AP, Thompson BT, et al. Initial trophic vs full enteral feeding in patients with acute lung injury: the EDEN randomized trial. JAMA. 2012;307:795–803.

    Article  CAS  Google Scholar 

  33. Mentec H, Dupont H, Bocchetti M, et al. Upper digestive intolerance during enteral nutrition in critically ill patients: frequency, risk factors, and complications. Crit Care Med. 2001;29:1955–61.

    CAS  PubMed  Article  Google Scholar 

  34. Ibrahim EH, Mehringer L, Prentice D, et al. Early versus late enteral feeding of mechanically ventilated patients: results of a clinical trial. J Parenter Enter Nutr. 2002;26:174–81.

    Article  Google Scholar 

  35. Drakulovic MB, Torres A, Bauer TT, et al. Supine body position as a risk factor for nosocomial pneumonia in mechanically ventilated patients: a randomized trial. Lancet. 1999;354:1851–8.

    CAS  PubMed  Article  Google Scholar 

  36. van Nieuwenhoven CA, Vandenbroucke-Grauls C, van Tiel FH, et al. Feasibility and effects of the semirecumbent position to prevent ventilator associated pneumonia: a randomized study. Crit Care Med. 2006;34:396–402.

    PubMed  Article  Google Scholar 

  37. Metheny NA, Clouse RE, Chang YH, et al. Tracheobronchial aspiration of gastric contents in critically ill tube-fed patients: frequency, outcomes, and risk factors. Crit Care Med. 2006;34:1007–15.

    PubMed  PubMed Central  Article  Google Scholar 

  38. Helman DL Jr, Sherner JH 3rd, Fitzpatrick TM, et al. Effect of standardized orders and provider education on head-of-bed positioning in mechanically ventilated patients. Crit Care Med. 2003;31:2285–90.

    PubMed  Article  Google Scholar 

  39. MacLeod JB, Lefton J, Houghton D, et al. Prospective randomized control trial of intermittent versus continuous gastric feeds for critically ill trauma patients. J Trauma. 2007;63:57–61.

    PubMed  Article  Google Scholar 

  40. Bonten MJ, Gaillard CA, van der Hulst R, et al. Intermittent enteral feeding: the influence on respiratory and digestive tract colonization in mechanically ventilated intensive-care-unit patients. Am J Respir Crit Care Med. 1996;154:394–9.

    CAS  PubMed  Article  Google Scholar 

  41. Steevens EC, Lipscomb AF, Poole GV, et al. Comparison of continuous vs intermittent nasogastric enteral feeding in trauma patients: perceptions and practice. Nutr Clin Pract. 2002;17:118–22.

    PubMed  Article  Google Scholar 

  42. Hiebert JM, Brown A, Anderson RG, et al. Comparison of continuous vs intermittent tube feedings in adult burn patients. J Parenter Enter Nutr. 1981;5:73–5.

    CAS  Article  Google Scholar 

  43. Kocan MJ, Hickisch SM. A comparison of continuous and intermittent enteral nutrition in NICU patients. J Neurosci Nurs. 1986;18:333–7.

    CAS  PubMed  Article  Google Scholar 

  44. Ciocon JO, Galindo-Ciocon DJ, Tiessen C, et al. Continuous compared with intermittent tube feeding in the elderly. JPEN J Parenter Enteral Nutr. 1992;16:525–8.

    CAS  PubMed  Article  Google Scholar 

  45. Booth CM, Heyland DK, Paterson WG. Gastrointestinal promotility drugs in the critical care setting: a systematic review of the evidence. Crit Care Med. 2002;30:1429–35.

    CAS  PubMed  Article  Google Scholar 

  46. Yavagal DR, Karnad DR, Oak JL. Metoclopramide for preventing pneumonia in critically ill patients receiving enteral tube feeding: a randomized controlled trial. Crit Care Med. 2000;28:1408–11.

    CAS  PubMed  Article  Google Scholar 

  47. Berne JD, Norwood SH, McAuley CE, et al. Erythromycin reduces delayed gastric emptying in critically ill trauma patients: a randomized, controlled trial. J Trauma. 2002;53:422–5.

    CAS  PubMed  Article  Google Scholar 

  48. Chapman MJ, Fraser RJ, Kluger MT, et al. Erythromycin improves gastric emptying in critically ill patients intolerant of nasogastric feeding. Crit Care Med. 2000;28:2334–7.

    CAS  PubMed  Article  Google Scholar 

  49. Reignier J, Bensaid S, Perrin-Gachadoat D, et al. Erythromycin and early enteral nutrition in mechanically ventilated patients. Crit Care Med. 2002;30:1237–41.

    CAS  PubMed  Article  Google Scholar 

  50. Nursal TZ, Erdogan B, Noyan T, et al. The effect of metoclopramide on gastric emptying in traumatic brain injury. J Clin Neurosci. 2007;14:344–8.

    CAS  PubMed  Article  Google Scholar 

  51. MacLaren R, Kiser TH, Fish DN, et al. Erythromycin vs metoclopramide for facilitating gastric emptying and tolerance to intragastric nutrition in critically ill patients. JPEN J Parenter Enteral Nutr. 2008;32:412–9.

    CAS  PubMed  Article  Google Scholar 

  52. Nguyen NQ, Chapman M, Fraser RJ, et al. Prokinetic therapy for feed intolerance in critical illness: one drug or two? Crit Care Med. 2007;35:2561–7.

    CAS  PubMed  Article  Google Scholar 

  53. Al-Khatib SM, LaPointe NM, Kramer JM, et al. What clinicians should know about the QT interval. JAMA. 2003;289:2120–7.

    PubMed  Article  Google Scholar 

  54. Li EC, Esterly JS, Pohl S, et al. Drug-induced QT-interval prolongation: considerations for clinicians. Pharmacotherapy. 2010;30:684–701.

    CAS  PubMed  Article  Google Scholar 

  55. Meissner W, Dohrn B, Reinhart K. Enteral naloxone reduces gastric tube reflux and frequency of pneumonia in critical care patients during opioid analgesia. Crit Care Med. 2003;31:776–80.

    CAS  PubMed  Article  Google Scholar 

  56. Lien HC, Chang CS, Chen GH. Can percutaneous endoscopic jejunostomy prevent gastroesophageal reflux in patients with preexisting esophagitis? Am J Gastroenterol. 2000;95:3439–43.

    CAS  PubMed  Article  Google Scholar 

  57. Heyland DK, Drover JW, MacDonald S, et al. Effect of postpyloric feeding on gastroesophageal regurgitation and pulmonary microaspiration: results of a randomized controlled trial. Crit Care Med. 2001;29:1495–501.

    CAS  PubMed  Article  Google Scholar 

  58. Hsu CW, Sun SF, Lin SL, et al. Duodenal versus gastric feeding in medical intensive care unit patients: a prospective, randomized, clinical study. Crit Care Med. 2009;37:1866–72.

    PubMed  Article  Google Scholar 

  59. Acosta-Escribano J, Fernández-Vivas M, Grau Carmona T. Gastric versus transpyloric feeding in severe traumatic brain injury: a prospective, randomized trial. Intensive Care Med. 2010;36:1532–9.

    PubMed  Article  Google Scholar 

  60. Montecalvo MA, Steger KA, Farber HW, et al. Nutritional outcome and pneumonia in critical care patients randomized to gastric versus jejunal tube feedings. The Critical Care Research Team. Crit Care Med. 1992;20:1377–87.

    CAS  PubMed  Article  Google Scholar 

  61. Kortbeek JB, Haigh PI, Doig C. Duodenal versus gastric feeding in ventilated blunt trauma patients: a randomized controlled trial. J Trauma. 1999;46:992–6.

    CAS  PubMed  Article  Google Scholar 

  62. Day L, Stotts NA, Frankfurt A, et al. Gastric versus duodenal feeding in patients with neurological disease: a pilot study. J Neurosci Nurs 2001;33:148–9, 155–9.

    CAS  Article  Google Scholar 

  63. Davies AR, Froomes PR, French CJ, et al. Randomized comparison of nasojejunal and nasogastric feeding in critically ill patients. Crit Care Med. 2002;30:586–90.

    PubMed  Article  Google Scholar 

  64. White H, Sosnowski K, Tran K, et al. A randomised controlled comparison of early post-pyloric versus early gastric feeding to meet nutritional targets in ventilated intensive care patients. Crit Care. 2009;13(6):R187.

    PubMed  PubMed Central  Article  Google Scholar 

  65. Kearns PJ, Chin D, Mueller L, et al. The incidence of ventilator-associated pneumonia and success in nutrient delivery with gastric versus small intestinal feeding: a randomized clinical trial. Crit Care Med. 2000;28:1742–6.

    CAS  PubMed  Article  Google Scholar 

  66. Montejo JC, Grau T, Acosta J, et al. Multicenter, prospective, randomized, single-blind study comparing the efficacy and gastrointestinal complications of early jejunal feeding with early gastric feeding in critically ill patients. Crit Care Med. 2002;30:796–800.

    PubMed  Article  Google Scholar 

  67. Davies AR, Morrison SS, Bailey MJ, et al. ENTERIC Study Investigators; ANZICS Clinical Trials Group. A multicenter, randomized controlled trial comparing early nasojejunal with nasogastric nutrition in critical illness. Crit Care Med. 2012;40:2342–8.

    PubMed  Article  Google Scholar 

  68. Huang HH, Chang SJ, Hsu CW, et al. Severity of illness influences the efficacy of enteral feeding route on clinical outcomes in patients with critical illness. J Acad Nutr Diet. 2012;112:1138–46.

    PubMed  Article  Google Scholar 

  69. Ho KM, Dobb GJ, Webb SA. A comparison of early gastric and post-pyloric feeding in critically ill patients: a meta-analysis. Intensive Care Med. 2006;32:639–49.

    PubMed  Article  Google Scholar 

  70. Marik PE, Zaloga GP. Gastric versus post-pyloric feeding: a systematic review. Crit Care. 2003;7:R46–51.

    PubMed  PubMed Central  Article  Google Scholar 

  71. Heyland DK, Drover JW, Dhaliwal R, et al. Optimizing the benefits and minimizing the risks of enteral nutrition in the critically ill: role of small bowel feeding. J Parenter Enter Nutr. 2002;26:S51–5.

    Article  Google Scholar 

  72. Minard G. Enteral access. Nutr Clin Pract. 1994;9:172–82.

    CAS  PubMed  Article  Google Scholar 

  73. Singer P, Blaser AR, Berger MM, et al. ESPEN guideline on clinical nutrition in the intensive care unit. Clin Nutr. 2019;38:48-79. https://doi.org/10.1016/j.clnu.2018.08.037.

    PubMed  Article  Google Scholar 

  74. Mentzelopoulos SD, Roussos C, Zakynthinos SG. Prone position reduces lung stress and strain in severe acute respiratory distress syndrome. Eur Respir J. 2005;25:534–44.

    CAS  PubMed  Article  Google Scholar 

  75. Galiatsou E, Kostanti E, Svarna E, et al. Prone position augments recruitment and prevents alveolar overinflation in acute lung injury. Am J Respir Crit Care Med. 2006;174:187–97.

    PubMed  Article  Google Scholar 

  76. Guérin C, Reignier J, Richard JC, et al. Prone positioning in severe acute respiratory distress syndrome. N Engl J Med. 2013;368:2159–68.

    PubMed  Article  CAS  Google Scholar 

  77. Alexander JW, Boyce ST, Babcock GF, et al. The process of microbial translocation. Ann Surg. 1990;212:496–510.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  78. Mainous MR, Ertel W, Chaudry IH, et al. The gut: a cytokine-generating organ in systemic inflammation? Shock. 1995;4:193–9.

    CAS  PubMed  Article  Google Scholar 

  79. Whelan K, Judd PA, Preedy VR, et al. Enteral feeding: the effect on faecal output, the faecal microflora and SCFA concentrations. Proc Nutr Soc. 2004;63:105–13.

    CAS  PubMed  Article  Google Scholar 

  80. Wiesen P, Van Gossum A, Preiser JC. Diarrhoea in the critically ill. Curr Opin Crit Care. 2006;12:149–54.

    PubMed  Article  Google Scholar 

  81. O'Donnell LJ, Virjee J, Heaton KW. Detection of pseudodiarrhoea by simple clinical assessment of intestinal transit rate. BMJ. 1990;300:439–40.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  82. Whelan K, Judd PA, Taylor MA. Assessment of fecal output in patients receiving enteral tube feeding: validation of a novel chart. Eur J Clin Nutr. 2004;58:1030–7.

    CAS  PubMed  Article  Google Scholar 

  83. Kelly TW, Patrick MR, Hillman KM. Study of diarrhea in critically ill patients. Crit Care Med. 1983;11:7–9.

    CAS  PubMed  Article  Google Scholar 

  84. Strack van Schijndel RJ, Wierdsma NJ, van Heijningen EM, et al. Fecal energy losses in enterally fed intensive care patients: an explorative study using bomb calorimetry. Clin Nutr. 2006;25:758–64.

    CAS  PubMed  Article  Google Scholar 

  85. Wierdsma NJ, Peters JH, Weijs PJ, et al. Malabsorption and nutritional balance in the ICU: fecal weight as a biomarker: a prospective observational pilot study. Crit Care. 2011;15:R264.

    PubMed  PubMed Central  Article  Google Scholar 

  86. Villet S, Chiolero RL, Bollmann MD, et al. Negative impact of hypocaloric feeding and energy balance on clinical outcome in ICU patients. Clin Nutr. 2005;24:502–9.

    PubMed  Article  Google Scholar 

  87. Oczkowski SJW, Duan EH, Groen A, et al. The use of bowel protocols in critically ill adult patients: a systematic review and meta-analysis. Crit Care Med. 2017;45:e718–26.

    PubMed  Article  Google Scholar 

  88. Modena S, Bearelly D, Swartz K, et al. Clostridium difficile among hospitalized patients receiving antibiotics: a case–control study. Infect Control Hosp Epidemiol. 2005;26:685–90.

    PubMed  Article  Google Scholar 

  89. Dial S, Alrasadi K, Manoukian C, et al. Risk of Clostridium difficile diarrhea among hospital inpatients prescribed proton pump inhibitors: cohort and case–control studies. Can Med Assoc. 2004;171:33–8.

    Article  Google Scholar 

  90. Crabtree TD, Pelletier SJ, Gleason TG, et al. Clinical characteristics and antibiotic utilization in surgical patients with Clostridium difficile-associated diarrhea. Am Surg. 1999;65:507–11.

    CAS  PubMed  Google Scholar 

  91. Vesta KA, Wells PG, Gentry CA, et al. Specific risk factors for Clostridium difficile-associated diarrhea: a prospective, multicenter, case control evaluation. Am J Infect Control. 2005;33:469–72.

    PubMed  Article  Google Scholar 

  92. Kyne L, Sougioultzis S, McFarland LV, et al. Underlying disease severity as a major risk factor for nosocomial Clostridium difficile diarrhea. Infect Control Hosp Epidemiol. 2002;23:653–9.

    PubMed  Article  Google Scholar 

  93. Bliss DZ, Johnson S, Savik K, et al. Acquisition of Clostridium difficile and Clostridium difficile-associated diarrhea in hospitalized patients receiving tube feeding. Ann Intern Med. 1998;129:1012–9.

    CAS  PubMed  Article  Google Scholar 

  94. Yip C, Loeb M, Salama S, et al. Quinolone use as a risk factor for nosocomial Clostridium difficile-associated diarrhea. Infect Control Hosp Epidemiol. 2001;22:572–5.

    CAS  PubMed  Article  Google Scholar 

  95. Meert KL, Daphtary KM, Metheny NA. Gastric vs small-bowel feeding in critically ill children receiving mechanical ventilation: a randomized controlled trial. Chest. 2004;126:872–8.

    PubMed  Article  Google Scholar 

  96. Lee JS, Auyeung TW. A comparison of two feeding methods in the alleviation of diarrhoea in older tube-fed patients: a randomised controlled trial. Age Ageing. 2003;32:388–93.

    PubMed  Article  Google Scholar 

  97. Schultz AA, Ashby-Hughes B, Taylor R, et al. Effects of pectin on diarrhea in critically ill tube-fed patients receiving antibiotics. Am J Crit Care. 2000;9:403–11.

    CAS  PubMed  Google Scholar 

  98. Yang G, Wu XT, Zhou Y, et al. Application of dietary fiber in clinical enteral nutrition: a meta-analysis of randomized controlled trials. World J Gastroenterol. 2005;11:3935–8.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  99. Klingensmith NJ, Coopersmith CM. Fecal microbiota transplantation for multiple organ dysfunction syndrome. Crit Care. 2016;20:398.

    PubMed  PubMed Central  Article  Google Scholar 

  100. McClave SA, Patel J, Bhutiani N. Should fecal microbial transplantation be used in the ICU? Curr Opin Crit Care. 2018;24:105–11.

    PubMed  Article  Google Scholar 


Page 2

Skip to main content

From: Enteral tolerance in critically ill patients

1. Criteria, conditions, and contraindications for enteral nutrition initiation
2. Route of infusion (gastric vs. jejunal/ postpyloric)
3. Method of infusion (intermittent vs. continuous)
4. Target amount of EN formula
5. Selection of the type of EN formula
6. Flow rate at initiation and changing the flow rate
7. Evaluation of gastrointestinal intolerance (gastric residual volume or abdominal X-ray)
8. Measures against complications (changing the method of infusion or type of EN formula)
9. How to manage the route (tube flushing, etc.)