When the combined effect of two drugs each producing the same biological response by the same mechanism of action is equal to the sum of their individual effects?

1. Frei E., Holland J.F., Schneiderman M.A., Pinkel D., Selkirk G., Freireich E.J., Silver R.T., Gold G.L., Regelson W. A comparative study of two regimens of combination chemotherapy in acute leukemia. Blood. 1958;13:1126–1148. [PubMed] [Google Scholar]

2. Chabner B.A., Roberts T.G. Timeline: chemotherapy and the war on cancer. Nat Rev Cancer. 2005;5:65–72. [PubMed] [Google Scholar]

3. Spain L., Julve M., Larkin J. Combination dabrafenib and trametinib in the management of advanced melanoma with BRAFV600 mutations. Expert Opin Pharmacother. 2016;17:1031–1038. [PubMed] [Google Scholar]

4. Lawrence M.S., Stojanov P., Mermel C.H., Robinson J.T., Garraway L.A., Golub T.R., Meyerson M., Gabriel S.B., Lander E.S., Getz G. Discovery and saturation analysis of cancer genes across 21 tumour types. Nature. 2014;505:495–501. [PMC free article] [PubMed] [Google Scholar]

5. Al-Lazikani B., Banerji U., Workman P. Combinatorial drug therapy for cancer in the post-genomic era. Nat Biotechnol. 2012;30:679–692. [PubMed] [Google Scholar]

6••. Foucquier J., Guedj M. Analysis of drug combinations: current methodological landscape. Pharmacol Res Perspect. 2015;3:e00149. [PMC free article] [PubMed] [Google Scholar]A review on the most prevalent analysis methods for drug combinatorial screening providing detailed overview of nomenclature, methodology landscapes as well as analysis pitfalls.

7. Jia J., Zhu F., Ma X., Cao Z., Cao Z.W., Li Y., Li Y.X., Chen Y.Z. Mechanisms of drug combinations: interaction and network perspectives. Nat Rev Drug Discov. 2009;8:111–128. [PubMed] [Google Scholar]

8. Sun X., Vilar S., Tatonetti N.P. High-throughput methods for combinatorial drug discovery. Sci Transl Med. 2013;5 205rv1–205rv1. [PubMed] [Google Scholar]

9. Gibbs B.K., Sourbier C. Detecting the potential pharmacological synergy of drug combination by viability assays in vitro. Methods Mol Biol. 2018;1709:129–137. [PubMed] [Google Scholar]

10•. Roell K.R., Reif D.M., Motsinger-Reif A.A. An introduction to terminology and methodology of chemical synergy-perspectives from across disciplines. Front Pharmacol. 2017;8:158. [PMC free article] [PubMed] [Google Scholar]The authors review the different terminology that exists in terms of drug combination effects in various fields and cover the most abundant analysis methods with their advantages and disadvantages.

11. Berenbaum M.C. What is synergy? Pharmacol Rev. 1989;41:93–141. [PubMed] [Google Scholar]

12. Loewe S. The problem of synergism and antagonism of combined drugs. Arzneimittelforschung. 1953;3:285–290. [PubMed] [Google Scholar]

13. Bliss C.I. The toxicity of poisons applied jointly. Annals Appl Biol. 1939;26:585–615. [Google Scholar]

14. Chou T.-C. Theoretical basis, experimental design, and computerized simulation of synergism and antagonism in drug combination studies. Pharmacol Rev. 2006;58:621–681. [PubMed] [Google Scholar]

15. Chou T.-C. Drug combination studies and their synergy quantification using the Chou–Talalay method. Cancer Res. 2010;70:440–446. [PubMed] [Google Scholar]

16. He L., Kulesskiy E., Saarela J., Turunen L., Wennerberg K., Aittokallio T., Tang J. Methods for high-throughput drug combination screening and synergy scoring. Methods Mol Biol. 2018;1711:351–398. [PMC free article] [PubMed] [Google Scholar]

17. Doern C.D. When does 2 plus 2 equal 5? A review of antimicrobial synergy testing. J Clin Microbiol. 2014;52:4124–4128. [PMC free article] [PubMed] [Google Scholar]

18•. Palmer A.C., Sorger P.K. Combination cancer therapy can confer benefit via patient-to-patient variability without drug additivity or synergy. Cell. 2017;171:1678–1691.e13. [PMC free article] [PubMed] [Google Scholar]A compelling theory article putting forward the concept that clinical effectiveness of combinatorial drug treatment may be robustly forecasted without drug synergy.

19. Larkin J., Chiarion-Sileni V., Gonzalez R., Grob J.J., Cowey C.L., Lao C.D., Schadendorf D., Dummer R., Smylie M., Rutkowski P. Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N Engl J Med. 2015;373:23–34. [PMC free article] [PubMed] [Google Scholar]

20. Schaffer M., Chaturvedi S., Davis C., Aquino R., Stepanchick E., Versele M., Liu Y., Yang J., Lu R., Balasubramanian S. Identification of potential ibrutinib combinations in hematological malignancies using a combination high-throughput screen. Leuk Lymphoma. 2018;59:931–940. [PubMed] [Google Scholar]

21. Radic-Sarikas B., Tsafou K.P., Emdal K.B., Papamarkou T., Huber K.V.M., Mutz C., Toretsky J.A., Bennett K.L., Olsen J.V., Brunak S. Combinatorial drug screening identifies ewing sarcoma-specific sensitivities. Mol Cancer Ther. 2017;16:88–101. [PubMed] [Google Scholar]

22. Licciardello M.P., Ringler A., Markt P., Klepsch F., Lardeau C.-H., Sdelci S., Schirghuber E., Müller A.C., Caldera M., Wagner A. A combinatorial screen of the CLOUD uncovers a synergy targeting the androgen receptor. Nat Chem Biol. 2017;13:771–778. [PubMed] [Google Scholar]

23. Simmons J.K., Michalowski A.M., Gamache B.J., DuBois W., Patel J., Zhang K., Gary J., Zhang S., Gaikwad S., Connors D. Cooperative targets of combined mTOR/HDAC Inhibition promote MYC degradation. Mol Cancer Ther. 2017;16:2008–2021. [PMC free article] [PubMed] [Google Scholar]

24. Beug S.T., Beauregard C.E., Healy C., Sanda T., St-Jean M., Chabot J., Walker D.E., Mohan A., Earl N., Lun X. Smac mimetics synergize with immune checkpoint inhibitors to promote tumour immunity against glioblastoma. Nat Commun. 2017;8 [PMC free article] [PubMed] [Google Scholar]

25. Barrangou R., Doudna J.A. Applications of CRISPR technologies in research and beyond. Nat Biotechnol. 2016;34:933–941. [PubMed] [Google Scholar]

26. Wang T., Birsoy K., Hughes N.W., Krupczak K.M., Post Y., Wei J.J., Lander E.S., Sabatini D.M. Identification and characterization of essential genes in the human genome. Science. 2015;350:1096–1101. [PMC free article] [PubMed] [Google Scholar]

27. Hart T., Chandrashekhar M., Aregger M., Steinhart Z., Brown K.R., MacLeod G., Mis M., Zimmermann M., Fradet-Turcotte A., Sun S. High-resolution CRISPR screens reveal fitness genes and genotype-specific cancer liabilities. Cell. 2015;163:1515–1526. [PubMed] [Google Scholar]

28. Meyers R.M., Bryan J.G., McFarland J.M., Weir B.A., Sizemore A.E., Xu H., Dharia N.V., Montgomery P.G., Cowley G.S., Pantel S. Computational correction of copy number effect improves specificity of CRISPR–Cas9 essentiality screens in cancer cells. Nat Genet. 2017;49:1779–1784. [PMC free article] [PubMed] [Google Scholar]

29. Najm F.J., Strand C., Donovan K.F., Hegde M., Sanson K.R., Vaimberg E.W., Sullender M.E., Hartenian E., Kalani Z., Fusi N. Orthologous CRISPR–Cas9 enzymes for combinatorial genetic screens. Nat Biotechnol. 2018;36:179–189. [PMC free article] [PubMed] [Google Scholar]

30••. Han K., Jeng E.E., Hess G.T., Morgens D.W., Li A., Bassik M.C. Synergistic drug combinations for cancer identified in a CRISPR screen for pairwise genetic interactions. Nat Biotechnol. 2017;35:463–474. [PMC free article] [PubMed] [Google Scholar]A key paper demonstrating the utility of CRISPR technology in screening and identification of promising clinically relevant drug combinations in defined cellular genetic backgrounds.

31. Wang T., Yu H., Hughes N.W., Liu B., Kendirli A., Klein K., Chen W.W., Lander E.S., Sabatini D.M. Gene essentiality profiling reveals gene networks and synthetic lethal interactions with oncogenic Ras. Cell. 2017;168:890–903.e15. [PMC free article] [PubMed] [Google Scholar]

32. Manchado E., Weissmueller S., Morris J.P., Chen C.-C., Wullenkord R., Lujambio A., de Stanchina E., Poirier J.T., Gainor J.F., Corcoran R.B. A combinatorial strategy for treating KRAS-mutant lung cancer. Nature. 2016;534:647–651. [PMC free article] [PubMed] [Google Scholar]

33. Barretina J., Caponigro G., Stransky N., Venkatesan K., Margolin A.A., Kim S., Wilson C.J., Lehar J., Kryukov G.V., Sonkin D. The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature. 2012;483:603–607. [PMC free article] [PubMed] [Google Scholar]

34. Garnett M.J., Edelman E.J., Heidorn S.J., Greenman C.D., Dastur A., Lau K.W., Greninger P., Thompson I.R., Luo X., Soares J. Systematic identification of genomic markers of drug sensitivity in cancer cells. Nature. 2012;483:570–575. [PMC free article] [PubMed] [Google Scholar]

35. Lieu C.H., Tan A.-C., Leong S., Diamond J.R., Eckhardt S.G. From bench to bedside: lessons learned in translating preclinical studies in cancer drug development. J Natl Cancer Inst. 2013;105:1441–1456. [PMC free article] [PubMed] [Google Scholar]

36. Pemovska T., Kontro M., Yadav B., Edgren H., Eldfors S., Szwajda A., Almusa H., Bespalov M.M., Ellonen P., Elonen E. Individualized systems medicine strategy to tailor treatments for patients with chemorefractory acute myeloid leukemia. Cancer Discov. 2013;3:1416–1429. [PubMed] [Google Scholar]

37•. Kurtz S.E., Eide C.A., Kaempf A., Khanna V., Savage S.L., Rofelty A., English I., Ho H., Pandya R., Bolosky W.J. Molecularly targeted drug combinations demonstrate selective effectiveness for myeloid- and lymphoid-derived hematologic malignancies. Proc Natl Acad Sci U S A. 2017;114:E7554–E7563. [PMC free article] [PubMed] [Google Scholar]The authors show how primary liquid biopsies of patient with hematological malignancies can be used to screen for combinations of drugs that affect specific cell signaling pathways.

38. Vladimer G.I., Snijder B., Krall N., Bigenzahn J.W., Huber K.V.M., Lardeau C.-H., Sanjiv K., Ringler A., Berglund U.W., Sabler M. Global survey of the immunomodulatory potential of common drugs. Nat Chem Biol. 2017;13:681–690. [PMC free article] [PubMed] [Google Scholar]

39•. Snijder B., Vladimer G.I., Krall N., Miura K., Schmolke A.-S., Kornauth C., Lopez de la Fuente O., Choi H.-S., van der Kouwe E., Gültekin S. Image-based ex-vivo drug screening for patients with aggressive haematological malignancies: interim results from a single-arm, open-label, pilot study. Lancet Haematol. 2017;4:e595–e606. [PMC free article] [PubMed] [Google Scholar]The authors report a novel imaging-based drug screening platform and its applicability to screen for effective drug combinations in patients with hematological malignancies as well as separate responding from non-responding AML patients to induction chemotherapy regimens.

40. Tentler J.J., Tan A.-C., Weekes C.D., Jimeno A., Leong S., Pitts T.M., Arcaroli J.J., Messersmith W.A., Eckhardt S.G. Patient-derived tumour xenografts as models for oncology drug development. Nat Rev Clin Oncol. 2012;9:338–350. [PMC free article] [PubMed] [Google Scholar]

41. Byrne A.T., Alférez D.G., Amant F., Annibali D., Arribas J., Biankin A.V., Bruna A., Budinská E., Caldas C., Chang D.K. Interrogating open issues in cancer precision medicine with patient-derived xenografts. Nat Rev Cancer. 2017;17:254–268. [PubMed] [Google Scholar]

42. Gao H., Korn J.M., Ferretti S., Monahan J.E., Wang Y., Singh M., Zhang C., Schnell C., Yang G., Zhang Y. High-throughput screening using patient-derived tumor xenografts to predict clinical trial drug response. Nat Med. 2015;21:1318–1325. [PubMed] [Google Scholar]

43. Drost J., Clevers H. Organoids in cancer research. Nat Rev Cancer. 2018;65:87. [Google Scholar]

44••. van de Wetering M., Francies H.E., Francis J.M., Bounova G., Iorio F., Pronk A., van Houdt W., van Gorp J., Taylor-Weiner A., Kester L. Prospective derivation of a living organoid biobank of colorectal cancer patients. Cell. 2015;161:933–945. [PMC free article] [PubMed] [Google Scholar]A seminal paper showing the feasibility of combinatorial drug screening in living organoid samples of colorectal cancer patients.

45. Jabs J., Zickgraf F.M., Park J., Wagner S., Jiang X., Jechow K., Kleinheinz K., Toprak U.H., Schneider M.A., Meister M. Screening drug effects in patient-derived cancer cells links organoid responses to genome alterations. Mol Syst Biol. 2017;13:955. [PMC free article] [PubMed] [Google Scholar]

46. Zappasodi R., Merghoub T., Wolchok J.D. Emerging concepts for immune checkpoint blockade-based combination therapies. Cancer Cell. 2018;33:581–598. [PMC free article] [PubMed] [Google Scholar]

47. Nalepa G., Rolfe M., Harper J.W. Drug discovery in the ubiquitin–proteasome system. Nat Rev Drug Discov. 2006;5:596–613. [PubMed] [Google Scholar]

48. Sakamoto K.M., Kim K.B., Kumagai A., Mercurio F., Crews C.M., Deshaies R.J. Protacs: chimeric molecules that target proteins to the Skp1–Cullin–F box complex for ubiquitination and degradation. Proc Natl Acad Sci U S A. 2001;98:8554–8559. [PMC free article] [PubMed] [Google Scholar]

49. Winter G.E., Buckley D.L., Paulk J., Roberts J.M., Souza A., Dhe-Paganon S., Bradner J.E. Drug development. Phthalimide conjugation as a strategy for in vivo target protein degradation. Science. 2015;348:1376–1381. [PMC free article] [PubMed] [Google Scholar]

50. Bondeson D.P., Crews C.M. Targeted protein degradation by small molecules. Annu Rev Pharmacol Toxicol. 2017;57:107–123. [PMC free article] [PubMed] [Google Scholar]

51. Moser S.C., Voerman J.S.A., Buckley D.L., Winter G.E., Schliehe C. Acute pharmacologic degradation of a stable antigen enhances its direct presentation on MHC class I molecules. Front Immunol. 2017;8:1920. [PMC free article] [PubMed] [Google Scholar]

52. Liu Y., Wei Q., Yu G., Gai W., Li Y., Chen X. DCDB 2.0: a major update of the drug combination database. Database (Oxford) 2014;2014:bau124. [PMC free article] [PubMed] [Google Scholar]


Page 2

When the combined effect of two drugs each producing the same biological response by the same mechanism of action is equal to the sum of their individual effects?

The most commonly utilized drug synergy detection and quantification methods

ConceptAssumptionsEquationsLimitationsReference
Bliss independenceIdea of no interaction (each drug is acting independently of one another)(i) The drug effect achieved by the probability that two drugs do not interfere with each other(ii) The combined drugs have a different site/ mechanism of action in achieving the effect

(iii) Drugs have exponential dose–effect curves

EA + EB(1 − EA) = EA  + EB − EAEB
CI = (EA + EB − EA  x EB)/EAB
Model is applicable solely to effects expressed as probabilities between 0 and 1In many drug interactions drug dependence cannot be excludedThe model must be applicable along the entire dose response curve

The model does not work in a `sham mixture’ situation

[13]
Loewe additivity`Sham mixture’ — no expectation of any type of interaction(i) Drug cannot interact with itself(ii) Constant potency ratio at all doses

(iii) Equal individual drug maximum effects

EAB = EA(a + ab) = EB(ba + b)
a + ab = A ↔ a + b x R = A ↔ a + b x A/B = A
a/A + b/B = 1
CI = a/A + b/B
Relies on precisely estimated dose–effect curves — thus not applicable when a dose-effect curve is not available
R is not always constant and is rather the exception
[12]
Highest single agent (HAS)The resulting effect of a drug combination is superior than the effects achieved by the individual drugsSynergistic drug combination should produce additional result on top of what its components can produce aloneEAB = max(EA,EB)
CI = max(EA,EB)/EAB
Often a drug combined with itself can produce an excess over HASFrequently fails to establish an improved drug combination effect in comparison to the expected additive effect of its components

Any extra effect over the higher single drug will be considered as synergy

[11]
Chou-TalalayBased on the median-effect equation and mass-action lawDrugs should have a constant potency ratiofa/fu  = (D/Dm)m*
CI = D1/E1 + D2/E2
Dose response curves are primarily non-linear, thus difficult to correctly calculate the median effect dose and the sigmoidicity of the dose–effect curve[14, 15, 16]