What is the position of the femoral condyle when the leg is properly positioned for an AP projection?

1. Imhoff FB, Cotic M, Liska F, Dyrna FGE, Beitzel K, Imhoff AB, et al. Derotational osteotomy at the distal femur is effective to treat patients with patellar instability. Knee Surg Sports Traumatol Arthrosc. 2019;27:652–658. doi: 10.1007/s00167-018-5212-z. [PubMed] [CrossRef] [Google Scholar]

2. Kamath AF, Ganz R, Zhang H, Grappiolo G, Leunig M. Subtrochanteric osteotomy for femoral mal-torsion through a surgical dislocation approach. J Hip Preserv Surg. 2015;2:65–79. doi: 10.1093/jhps/hnv011. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

3. Imhoff FB, Beitzel K, Zakko P, Obopilwe E, Voss A, Scheiderer B, et al. Derotational osteotomy of the distal femur for the treatment of Patellofemoral instability simultaneously leads to the correction of frontal alignment: A laboratory cadaveric study. Orthop J Sports Med. 2018;6:2325967118775664. [PMC free article] [PubMed] [Google Scholar]

4. Jud L, Vlachopoulos L, Haller TV, Fucentese SF, Rahm S, Zingg PO. The impact of mal-angulated femoral rotational osteotomies on mechanical leg axis: a computer simulation model. BMC Musculoskelet Disord. 2020;21:50. doi: 10.1186/s12891-020-3075-1. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

5. Nelitz M, Wehner T, Steiner M, Durselen L, Lippacher S. The effects of femoral external derotational osteotomy on frontal plane alignment. Knee Surg Sports Traumatol Arthrosc. 2014;22:2740–2746. doi: 10.1007/s00167-013-2618-5. [PubMed] [CrossRef] [Google Scholar]

6. Lee SY, Jeong J, Lee K, Chung CY, Lee KM, Kwon SS, et al. Unexpected angular or rotational deformity after corrective osteotomy. BMC Musculoskelet Disord. 2014;15:175. doi: 10.1186/1471-2474-15-175. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

7. Kazemi SM, Shafaghi T, Minaei R, Osanloo R, Abrishamkarzadeh H, Safdari F. The effect of sagittal femoral bowing on the femoral component position in Total knee Arthroplasty. Arch Bone Jt Surg. 2017;5:250–254. [PMC free article] [PubMed] [Google Scholar]

8. Ko JH, Han CD, Shin KH, Nguku L, Yang IH, Lee WS, et al. Femur bowing could be a risk factor for implant flexion in conventional total knee arthroplasty and notching in navigated total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc. 2016;24:2476–2482. doi: 10.1007/s00167-015-3863-6. [PubMed] [CrossRef] [Google Scholar]

9. Buford WL, Jr, Turnbow BJ, Gugala Z, Lindsey RW. Three-dimensional computed tomography-based modeling of sagittal cadaveric femoral bowing and implications for intramedullary nailing. J Orthop Trauma. 2014;28:10–16. doi: 10.1097/BOT.0000000000000019. [PubMed] [CrossRef] [Google Scholar]

10. Egol KA, Chang EY, Cvitkovic J, Kummer FJ, Koval KJ. Mismatch of current intramedullary nails with the anterior bow of the femur. J Orthop Trauma. 2004;18:410–415. doi: 10.1097/00005131-200408000-00003. [PubMed] [CrossRef] [Google Scholar]

11. Schroter S, Ihle C, Elson DW, Dobele S, Stockle U, Ateschrang A. Surgical accuracy in high tibial osteotomy: coronal equivalence of computer navigation and gap measurement. Knee Surg Sports Traumatol Arthrosc. 2016;24:3410–3417. doi: 10.1007/s00167-016-3983-7. [PubMed] [CrossRef] [Google Scholar]

12. Fürnstahl P, Schweizer A, Graf M, Vlachopoulos L, Fucentese S, Wirth S, et al. Surgical treatment of long-bone deformities: 3D preoperative planning and patient-specific instrumentation. Computational radiology for orthopaedic interventions. New York: Springer; 2016. pp. 123–149. [Google Scholar]

13. Jud L, Trache T, Tondelli T, Furnstahl P, Fucentese SF, Vlachopoulos L (2019) Rotation or flexion alters mechanical leg axis measurements comparably in patients with different coronal alignment. Knee Surg Sports Traumatol Arthrosc. 10.1007/s00167-019-05779-7 [PubMed]

14. Wu G, Siegler S, Allard P, Kirtley C, Leardini A, Rosenbaum D, et al. ISB recommendation on definitions of joint coordinate system of various joints for the reporting of human joint motion--part I: ankle, hip, and spine. International Society of Biomechanics. J Biomech. 2002;35:543–548. doi: 10.1016/S0021-9290(01)00222-6. [PubMed] [CrossRef] [Google Scholar]

15. Nemes S, Rolfson O, WD A, Garellick G, Sundberg M, Karrholm J, et al. Historical view and future demand for knee arthroplasty in Sweden. Acta Orthop. 2015;86:426–431. doi: 10.3109/17453674.2015.1034608. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

16. Callaghan JJ, O'Rourke MR, Goetz DD, Schmalzried TP, Campbell PA, Johnston RC (2002) Tibial post impingement in posterior-stabilized total knee arthroplasty. Clin Orthop Relat Res. 10.1097/00003086-200211000-0001483-88 [PubMed]

17. Ritter MA, Thong AE, Keating EM, Faris PM, Meding JB, Berend ME, et al. The effect of femoral notching during total knee arthroplasty on the prevalence of postoperative femoral fractures and on clinical outcome. J Bone Joint Surg Am. 2005;87:2411–2414. [PubMed] [Google Scholar]

18. Yehyawi TM, Callaghan JJ, Pedersen DR, O'Rourke MR, Liu SS. Variances in sagittal femoral shaft bowing in patients undergoing TKA. Clin Orthop Relat Res. 2007;464:99–104. [PubMed] [Google Scholar]

19. Puranik HG, Mukartihal R, Patil SS, Dhanasekaran SR, Menon VK. Does femoral notching during Total knee Arthroplasty influence Periprosthetic fracture. A Prospective Study. J Arthroplasty. 2019;34:1244–1249. doi: 10.1016/j.arth.2019.02.034. [PubMed] [CrossRef] [Google Scholar]

20. Zalzal P, Backstein D, Gross AE, Papini M. Notching of the anterior femoral cortex during total knee arthroplasty characteristics that increase local stresses. J Arthroplast. 2006;21:737–743. doi: 10.1016/j.arth.2005.08.020. [PubMed] [CrossRef] [Google Scholar]

21. O'Rourke MR, Callaghan JJ, Goetz DD, Sullivan PM, Johnston RC. Osteolysis associated with a cemented modular posterior-cruciate-substituting total knee design : five to eight-year follow-up. J Bone Joint Surg Am. 2002;84:1362–1371. doi: 10.2106/00004623-200208000-00012. [PubMed] [CrossRef] [Google Scholar]

22. Cummings SR, Rubin SM, Black D (1990) The future of hip fractures in the United States. Numbers, costs, and potential effects of postmenopausal estrogen. Clin Orthop Relat Res 252:163–166 [PubMed]

23. Roberts JW, Libet LA, Wolinsky PR. Who is in danger? Impingement and penetration of the anterior cortex of the distal femur during intramedullary nailing of proximal femur fractures: preoperatively measurable risk factors. J Trauma Acute Care Surg. 2012;73:249–254. doi: 10.1097/TA.0b013e318256a0b6. [PubMed] [CrossRef] [Google Scholar]

24. Jud L, Vlachopoulos L, Beeler S, Tondelli T, Furnstahl P, Fucentese SF (2020) Accuracy of three dimensional-planned patient-specific instrumentation in femoral and tibial rotational osteotomy for patellofemoral instability. Int Orthop. 10.1007/s00264-020-04496-y [PubMed]


Page 2

PMC full text:

Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Absolute mean deviations from the preoperative sagittal mechanical leg axis in supracondylar rotational osteotomies

Angulation Error of the Osteotomy PlanePlaneError in the Sagittal Leg Axis Alignment per Rotation
10°15°20°30°
+/−  5°Sagittal0.1° ± 0.1°0.3° ± 0.2°0.4° ± 0.3°0.6° ± 0.4°1.0° ± 0.6°
Frontal0.4° ± 0.0°0.7° ± 0.1°1.0° ± 0.2°1.3° ± 0.2°2.1° ± 0.7°
+/−  10°Sagittal0.2° ± 0.2°0.5° ± 0.4°0.8° ± 0.7°1.1° ± 0.9°2.0° ± 1.2°
Frontal0.7° ± 0.1°1.4° ± 0.2°2.0° ± 0.3°2.6° ± 0.4°3.7° ± 0.8°
+/−  15°Sagittal0.4° ± 0.3°0.7° ± 0.7°1.2° ± 1.0°1.7° ± 1.3°3.0° ± 1.9°
Frontal1.0° ± 0.1°2.0° ± 0.3°3.0° ± 0.4°3.9° ± 0.6°5.6° ± 1.1°
+/−  20°Sagittal0.5° ± 0.3°1.0° ± 0.8°1.6° ± 1.2°2.3° ± 1.6°4.1° ± 2.3°
Frontal1.4° ± 0.2°2.7° ± 0.3°4.0° ± 0.6°5.2° ± 0.8°7.4° ± 1.4°
+/−  30°Sagittal0.7° ± 0.6°1.3° ± 1.3°2.2° ± 1.9°3.2° ± 2.5°5.6° ± 3.7°
Frontal2.0° ± 0.2°3.9° ± 0.5°5.8° ± 0.8°7.6° ± 1.2°11.0° ± 2.0°