What is the name of the device that reduces the pressure from an oxygen tank to something usable for the patient?

1. Lacasse Y., Tan A.-Y.M., Maltais F., Krishnan J.A. Home Oxygen in Chronic Obstructive Pulmonary Disease. Am. J. Respir. Crit. Care Med. 2018;197:1254–1264. doi: 10.1164/rccm.201802-0382CI. [PubMed] [CrossRef] [Google Scholar]

2. O’Driscoll B.R., Howard L.S., Earis J., Mak V. BTS guideline for oxygen use in adults in healthcare and emergency settings. Thorax. 2017;72:ii1–ii90. doi: 10.1136/thoraxjnl-2016-209729. [PubMed] [CrossRef] [Google Scholar]

3. From the Global Strategy for the Diagnosis, Management and Prevention of COPD, Global Initiative for Chronic Obstructive Lung Disease (GOLD) [(accessed on 1 January 2020)]; Available online: http://goldcopd.org/

4. Celli B.R., MacNee W. Standards for the diagnosis and treatment of patients with COPD: A summary of the ATS/ERS position paper. Eur. Respir. J. 2004;23:932–946. doi: 10.1183/09031936.04.00014304. [PubMed] [CrossRef] [Google Scholar]

5. Nocturnal Oxygen Therapy Trial Group Continuous or Nocturnal Oxygen Therapy in Hypoxemic Chronic Obstructive Lung Disease. Ann. Intern. Med. 1980;93:391. doi: 10.7326/0003-4819-93-3-391. [PubMed] [CrossRef] [Google Scholar]

6. Medical Research Council Working Party Long term domiciliary oxygen therapy in chronic hypoxic cor pulmonale complicating chronic bronchitis and emphysema. Report of the Medical Research Council Working Party. Lancet. 1981;317:681–686. doi: 10.1016/S0140-6736(81)91970-X. [PubMed] [CrossRef] [Google Scholar]

7. Bradley J.M., Lasserson T., Elborn S., MacMahon J., O’Neill B. A Systematic Review of Randomized Controlled Trials Examining the Short-term Benefit of Ambulatory Oxygen in COPD. Chest. 2007;131:278–285. doi: 10.1378/chest.06-0180. [PubMed] [CrossRef] [Google Scholar]

8. Casaburi R. Long-Term Oxygen Therapy: The Three Big Questions. Ann. Am. Thorac. Soc. 2018;15:14–15. doi: 10.1513/AnnalsATS.201709-715ED. [PubMed] [CrossRef] [Google Scholar]

9. Samuel J., Franklin C. Common Surgical Diseases. Springer; Berlin/Heidelberg, Germany: 2008. Hypoxemia and Hypoxia. [Google Scholar]

10. Branson R.D., Robinson B.R.H. Oxygen: When is more the enemy of good? Intensive Care Med. 2011;37:1–3. doi: 10.1007/s00134-010-2034-y. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

11. Mach W.J., Thimmesch A.R., Pierce J.T., Pierce J.D. Consequences of Hyperoxia and the Toxicity of Oxygen in the Lung. Nurs. Res. Pract. 2011;2011:1–7. doi: 10.1155/2011/260482. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

12. Cameron L., Pilcher J., Weatherall M., Beasley R., Perrin K. The risk of serious adverse outcomes associated with hypoxaemia and hyperoxaemia in acute exacerbations of COPD. Postgr. Med. J. 2012;88:684–689. doi: 10.1136/postgradmedj-2012-130809. [PubMed] [CrossRef] [Google Scholar]

13. Kilgannon J.H. Association Between Arterial Hyperoxia Following Resuscitation From Cardiac Arrest and In-Hospital Mortality. JAMA. 2010;303:2165. doi: 10.1001/jama.2010.707. [PubMed] [CrossRef] [Google Scholar]

14. Austin M.A., Wills K.E., Blizzard L., Walters E.H., Wood-Baker R. Effect of high flow oxygen on mortality in chronic obstructive pulmonary disease patients in prehospital setting: Randomised controlled trial. BMJ. 2010;341:c5462. doi: 10.1136/bmj.c5462. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

15. Sassoon C.S., Hassell K.T., Mahutte C.K. Hyperoxic-induced hypercapnia in stable chronic obstructive pulmonary disease. Am. Rev. Respir Dis. 1987;135:907–911. doi: 10.1164/arrd.1987.135.4.907. [PubMed] [CrossRef] [Google Scholar]

16. Croxton T.L., Bailey W.C. Long-term oxygen treatment in chronic obstructive pulmonary disease: Recommendations for future research: An NHLBI workshop report. Am. J. Respir. Crit. Care Med. 2006;174:373–378. doi: 10.1164/rccm.200507-1161WS. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

17. Brill S.E., Wedzicha J. A Oxygen therapy in acute exacerbations of chronic obstructive pulmonary disease. Int. J. Chron. Obstruct. Pulmon. Dis. 2014;9:1241–1252. [PMC free article] [PubMed] [Google Scholar]

18. McCoy R.W. Options for home oxygen therapy equipment: Storage and metering of oxygen in the home. Respir. Care. 2013;58:65–81. doi: 10.4187/respcare.01932. [PubMed] [CrossRef] [Google Scholar]

19. Lellouche F., L’Her E. Automated Oxygen Flow Titration to Maintain Constant Oxygenation. Respir. Care. 2012;57:1254–1262. doi: 10.4187/respcare.01343. [PubMed] [CrossRef] [Google Scholar]

20. Claure N., Bancalari E. Automated closed loop control of inspired oxygen concentration. Respir. Care. 2013;58:151–161. doi: 10.4187/respcare.01955. [PubMed] [CrossRef] [Google Scholar]

21. Casanova C., Hernández M.C., Sánchez A., García-Talavera I., De Torres J.P., Abreu J., Valencia J.M., Aguirre-Jaime A., Celli B.R. Twenty-four-hour ambulatory oximetry monitoring in COPD patients with moderate hypoxemia. Respir. Care. 2006;51:1416–1423. [PubMed] [Google Scholar]

22. Mayoralas-Alises S., Carratalá J.M., Díaz-Lobato S. New Perspectives in Oxygen Therapy Titration: Is Automatic Titration the Future? Arch. Bronconeumol. 2019;55:319–327. doi: 10.1016/j.arbres.2018.09.006. [PubMed] [CrossRef] [Google Scholar]

23. Dunne P.J. Long-term oxygen therapy (LTOT) revisited: In defense of non-delivery LTOT technology. Rev. Port. Pneumol. 2012;18:155–157. doi: 10.1016/j.rppneu.2012.02.011. [PubMed] [CrossRef] [Google Scholar]

24. Dunne P.J., MacIntyre N.R., Schmidt U.H., Haas C.F., Jones-Boggs Rye K., Kauffman G.W., Hess D.R. Respiratory Care Year in Review 2011: Long-Term Oxygen Therapy, Pulmonary Rehabilitation, Airway Management, Acute Lung Injury, Education, and Management. Respir. Care. 2012;57:590–606. doi: 10.4187/respcare.01776. [PubMed] [CrossRef] [Google Scholar]

25. Sanchez-Morillo D., Olaby O., Fernandez-Granero M.A., Leon-Jimenez A. Physiological closed-loop control in intelligent oxygen therapy: A review. Comput. Methods Programs Biomed. 2017;146:101–108. doi: 10.1016/j.cmpb.2017.05.013. [PubMed] [CrossRef] [Google Scholar]

26. British Lung Foundation: Chronic Obstructive Pulmonary Disease (COPD) Statistics. [(accessed on 1 January 2020)]; Available online: https://statistics.blf.org.uk/copd

27. International Electrotechnical Commission . IEC 60601-1-10 Medical Electrical Equipment–Part 1-10: General Requirements for Basic Safety and Essential Performance–Collateral Standard: Requirements for the Development of Physiologic Closed-Loop Controllers. International Electrotechnical Commission; Geneva, Switzerland: 2007. [Google Scholar]

28. Dumont G.A. Feedback control for clinicians. J. Clin. Monit. Comput. 2014;28:5–11. doi: 10.1007/s10877-013-9469-y. [PubMed] [CrossRef] [Google Scholar]

29. Lellouche F., Lipes J., L’Her E. Optimal oxygen titration in patients with chronic obstructive pulmonary disease: A role for automated oxygen delivery? Can. Respir. J. 2013;20:259–261. doi: 10.1155/2013/376545. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

30. Iobbi M.G., Simonds A.K., Dickinson R.J. Oximetry feedback flow control simulation for oxygen therapy. J. Clin. Monit. Comput. 2007;21:115–123. doi: 10.1007/s10877-006-9064-6. [PubMed] [CrossRef] [Google Scholar]

31. El Adawi M.I., El-garhy A.M., Sawafta F.O. Design of Fuzzy Controller for Supplying Oxygen in Sub-acute Respiratory Illnesses. Int. J. Comput. Sci. Issues. 2012;9:192–206. [Google Scholar]

32. Lellouche F., Bouchard P., Roberge M., Simard S., L’Her E., Maltais F., Lacass Y. Automated oxygen titration and weaning with FreeO2 in patients with acute exacerbation of COPD: A pilot randomized trial. Int. J. COPD. 2016;11:1983–1990. doi: 10.2147/COPD.S112820. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

33. Cirio S., Nava S. Pilot study of a new device to titrate oxygen flow in hypoxic patients on long-term oxygen therapy. Respir. Care. 2011;56:429–434. doi: 10.4187/respcare.00983. [PubMed] [CrossRef] [Google Scholar]

34. Rice K.L., Schmidt M.F., Buan J.S., Lebahn F., Schwarzock T.K. AccuO2 Oximetry-Driven Oxygen-Conserving Device Versus Fixed-Dose Oxygen Devices in Stable COPD Patients. Respir. Care. 2011;56:1901–1905. doi: 10.4187/respcare.01059. [PubMed] [CrossRef] [Google Scholar]

35. Chan E.D., Chan M.M., Chan M.M. Pulse oximetry: Understanding its basic principles facilitates appreciation of its limitations. Respir. Med. 2013;107:789–799. doi: 10.1016/j.rmed.2013.02.004. [PubMed] [CrossRef] [Google Scholar]

36. Jacobs S.S., Lindell K.O., Collins E.G., Garvey C.M., Hernandez C., McLaughlin S., Schneidman A.M., Meek P.M. Patient perceptions of the adequacy of supplemental oxygen therapy: Results of the American thoracic society nursing assembly oxygen working group survey. Ann. Am. Thorac. Soc. 2018;15:24–32. doi: 10.1513/AnnalsATS.201703-209OC. [PubMed] [CrossRef] [Google Scholar]

37. Lara-Doña A., Sanchez-Morillo D., Pérez-Morales M., Fernandez-Granero M.Á., Leon-Jimenez A. A Prototype of Intelligent Portable Oxygen Concentrator for Patients with COPD Under Oxygen Therapy. In: Henriques J., Neves N., de Carvalho P., editors. XV Mediterranean Conference on Medical and Biological Engineering and Computing–MEDICON 2019. Springer; Berlin/Heidelberg, Germany: 2020. [Google Scholar]

38. Branson R.D. Oxygen therapy in copd. Respir. Care. 2018;63:734–748. doi: 10.4187/respcare.06312. [PubMed] [CrossRef] [Google Scholar]

39. Dutta A., Ma O., Toledo M., Pregonero A., Ainsworth B., Buman M., Bliss D. Identifying Free-Living Physical Activities Using Lab-Based Models with Wearable Accelerometers. Sensors. 2018;18:3893. doi: 10.3390/s18113893. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

40. Tedesco S., Barton J., O’Flynn B. A Review of Activity Trackers for Senior Citizens: Research Perspectives, Commercial Landscape and the Role of the Insurance Industry. Sensors. 2017;17:1277. doi: 10.3390/s17061277. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

41. Rosenberg D., Godbole S., Ellis K., Di C., Lacroix A., Natarajan L., Kerr J. Classifiers for Accelerometer-Measured Behaviors in Older Women. Med. Sci. Sports Exerc. 2017;49:610–616. doi: 10.1249/MSS.0000000000001121. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

42. Farooq M., Sazonov E. A Novel Wearable Device for Food Intake and Physical Activity Recognition. Sensors. 2016;16:1067. doi: 10.3390/s16071067. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

43. Yang C.-C., Hsu Y.-L. A review of accelerometry-based wearable motion detectors for physical activity monitoring. Sensors. 2010;10:7772. doi: 10.3390/s100807772. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

44. Inogen One G2 Oxygen Concentrator Technical Manual. [(accessed on 11 October 2019)]; Available online: https://www.inogen.com/pdf/Inogen_One_G2_Technical_Manual.pdf

45. Mortazavi B., Alsharufa N., Lee S.I., Lan M., Sarrafzadeh M., Chronley M., Roberts C.K. MET calculations from on-body accelerometers for exergaming movements; Proceedings of the 2013 IEEE International Conference on Body Sensor Networks; Cambridge, MA, USA. 6–9 May 2013. [Google Scholar]

46. Ainsworth B.E., Haskell W.I.L., Whitt M.C., Irwin M.L., Swartz A.M., Strath S.J., O’Brien W.I.L., Bassett D.R., Jr., Schmitz K.H., Emplaincourt P.O., et al. Compendium of physical activities: An update of activity codes and MET intensities. Med. Sci. Sports Exerc. 2000;32:S498–S504. doi: 10.1097/00005768-200009001-00009. [PubMed] [CrossRef] [Google Scholar]

47. Kohavi R., John G.H. Wrappers for feature subset selection. Artif. Intell. 1997;97:273–324. doi: 10.1016/S0004-3702(97)00043-X. [CrossRef] [Google Scholar]

48. Casasent D., Wang Y.C. A hierarchical classifier using new support vector machine for automatic target recognition. Neural Netw. 2005;18:541–548. doi: 10.1016/j.neunet.2005.06.033. [PubMed] [CrossRef] [Google Scholar]

49. Wang Y.-C.F., Casasent D. A support vector hierarchical method for multi-class classification and rejection; Proceedings of the 2009 International Joint Conference on Neural Networks; Atlanta, GA, USA. 14–19 June 2009. [Google Scholar]

50. Brooke J. SUS-A quick and dirty usability scale. Usabil. Eval. Ind. 1996;189:4–7. [Google Scholar]

51. Miłkowska-Dymanowska J., Białas A.J., Obrębski W., Górski P., Piotrowski W.J. A pilot study of daily telemonitoring to predict acute exacerbation in chronic obstructive pulmonary disease. Int. J. Med. Inform. 2018;116:46–51. doi: 10.1016/j.ijmedinf.2018.04.013. [PubMed] [CrossRef] [Google Scholar]

52. Brooke J. SUS: A Retrospective. J. Usabil. Stud. 2013;8:29–40. [Google Scholar]

53. Jacobs S.S., Lederer D.J., Garvey C.M., Hernandez C., Lindell K.O., McLaughlin S., Schneidman A.M., Casaburi R., Chang V., Cosgrove G.P., et al. Optimizing Home Oxygen Therapy. An Official American Thoracic Society Workshop Report. Ann. Am. Thorac. Soc. 2018;15:1369–1381. doi: 10.1513/AnnalsATS.201809-627WS. [PubMed] [CrossRef] [Google Scholar]

54. Marti S., Pajares V., Morante F., Ramon M.-A., Lara J., Ferrer J., Guell M.-R. Are Oxygen-Conserving Devices Effective for Correcting Exercise Hypoxemia? Respir. Care. 2013;58:1606–1613. doi: 10.4187/respcare.02260. [PubMed] [CrossRef] [Google Scholar]

55. Scheeren T.W.L., Belda F.J., Perel A. The oxygen reserve index (ORI): A new tool to monitor oxygen therapy. J. Clin. Monit. Comput. 2018;32:379–389. doi: 10.1007/s10877-017-0049-4. [PMC free article] [PubMed] [CrossRef] [Google Scholar]