What is the difference in the exercise prescription for building muscular endurance versus muscle strength?

[1] Romero-Arenas S, Martínez-Pascual M, Alcaraz PE. Role of muscle loss in the age-associated reduction in VO2max. Aging Dis. 2013;5:256–263. [Google Scholar]

[2] Izquierdo M, Häkkinen K, Antón A, Garrues M, Ibañez J, Ruesta M, Gorostiaga EM. Maximal strength and power, endurance performance, and serum hormones in middle-aged and elderly men. Med Sci Sports Exerc. 2001;33:1577–1587. [PubMed] [Google Scholar]

[3] Izquierdo M, Häkkinen K, Ibanez J, Antón A, Garrués M, Ruesta M, Gorostiaga EM. Effects of strength training on submaximal and maximal endurance performance capacity in middle-aged and older men. J Strength Cond Res. 2003;17:129–139. [PubMed] [Google Scholar]

[4] Snijders T, Verdijk LB, van Loon LJC. The impact of sarcopenia and exercise training on skeletal muscle satellite cells. Ageing Res Rev. 2009;8:328–338. [PubMed] [Google Scholar]

[5] Aagaard P, Suetta C, Caserotti P, Magnusson SP, Kjaer M. Role of the nervous system in sarcopenia nad muscle atrophy with aging: strength training as a countermeasure. Scand J Med Sci Sports. 2010;20:49–64. [PubMed] [Google Scholar]

[6] Izquierdo M, Ibanez J, Gorostiaga EM, Garrues M, Zuñiga A, Antón A, Larrión JL, Häkkinen K. Maximal strength and power characteristics in isometric and dynamic actions of upper and lower extremities in middle-aged and older med. Acta Physiol Scand. 1999;167:57–68. [PubMed] [Google Scholar]

[7] Izquierdo M, Aguado X, Gonzalez R, López JL, Häkkinen K. Maximal and explosive force production capacity and balance performance in men of different ages. Eur J Appl Physiol Occup Physiol. 1999;79:260–267. [PubMed] [Google Scholar]

[8] Sayers SP, Bean J, Cuoco A, Le Brasseur NK, Jette A, Fielding RA. Changes in function and disability after resistance training: does velocity matter? A pilot study. Am J Phys Med Rehabil. 2003;82:605–613. [PubMed] [Google Scholar]

[9] Henwood TR, Riek S, Taaffe DR. Strength versus muscle power specific resistance training in community-dwelling older adults. J Gerontol A Biol Sci Med Sci. 2008;63:83–91. [PubMed] [Google Scholar]

[10] Miszko TA, Cress ME, Slade JM, Covey CJ, Agrawal SK, Doerr CE. Effect of strength and power training on physical function in community-dwelling older adults. J Gerontol A Biol Sci Med Sci. 2003;58:171–175. [PubMed] [Google Scholar]

[11] Bottaro M, Machado SN, Nogueira W, Scales R, Veloso J. Effect of high versus low-velocity resistance training on muscular fitness and functional performance in older men. Eur J Appl Physiol. 2007;99:257–64. [PubMed] [Google Scholar]

[12] Reid KF, Fielding RA. Skeletal muscle power and functioning in older adults. Exerc Sport Sci Rev. 2012;40:1–12. [PMC free article] [PubMed] [Google Scholar]

[13] Casas-Herrero A, Cadore EL, Zambom-Ferraresi F, Idoate F, Millor N, Martínez-Ramírez A, Gómez M, Rodríguez-Mañas L, Marcellan T, Ruiz de Gordoa A, Marques MC, Izquierdo M. Functional capacity, muscle fat infiltration, power output and cognitive impairment in institutionalized frail oldest-old. Rejuvenation Res. 2013;16:396–403. [PMC free article] [PubMed] [Google Scholar]

[14] Kraemer WJ, Patton JF, Gordon SE, Harman EA, Deschenes MR, Reynolds K, Newton RU, Tripplet NT, Dziados JE. Compatibility of high-intensity strength and endurance training on hormonal and skeletal muscle adaptations. J Appl Physiol. 1995;78:976–989. [PubMed] [Google Scholar]

[15] Knight CA, Kamen G. Adaptations in muscle activation of the knee extensor muscle with strength training in young and older adults. J Electromyogr Kinesiol. 2001;11:405–412. [PubMed] [Google Scholar]

[16] Kamen G, Knight CA. Training-related adaptations in motor unit discharge rate in young and older adults. J Gerontol A Biol Sci Med Sci. 2004;59:1334–1338. [PubMed] [Google Scholar]

[17] Aagaard P, Simonsen EB, Andersen JL, Magnusson P, Dyhre-Poulsen P. Increased rate of force development and neural drive of human skeletal muscle following resistance training. J Appl Physiol. 2002;93:1318–1326. [PubMed] [Google Scholar]

[18] Aagaard P, Simonsen EB, Andersen JL, Magnusson P, Dyhre-Poulsen P. Neural adaptation to resistance training: changes in evoked V-wave and H-reflex responses. J Appl Physiol. 2002;92:2309–2318. [PubMed] [Google Scholar]

[19] Izquierdo M, Häkkinen K, Ibañez J, Garrues M, Antón A, Zúniga A, Larrión JL, Gorostiaga EM. Effects of strength training on muscle power and serum hormones in middle-aged and older men. J Appl Physiol. 2001;90:1497–1507. [PubMed] [Google Scholar]

[20] Peterson MD, Rhea MR, Gordon PM. Resistance exercise for muscular strength in older adults: A meta-analysis. Ageing Res Rev. 2010;9:226–237. [PMC free article] [PubMed] [Google Scholar]

[21] Wood RH, Reyes R, Welsch MA, Favarolo-Sabatier J, Sabatier M, Lee CM, Johnson LG, Hooper PF. Concurrent cardiovascular and resistance training in healthy older adults. Med Sci Sports Exerc. 2001;33:1751–1758. [PubMed] [Google Scholar]

[22] Izquierdo M, Ibañez J, Häkkinen K, Kraemer WJ, Larrión JL, Gorostiaga EM. Once weekly combined resistance and cardiovascular training in healthy older men. Med Sci Sports Exerc. 2004;36:435–443. [PubMed] [Google Scholar]

[23] Cadore EL, Pinto RS, Lhullier FLR, Correa CS, Alberton CL, Pinto SS, Almeida APV, Tartaruga MP, Silva EM, Kruel LFM. Effects of strength, endurance and concurrent training on aerobic power and dynamic neuromuscular economy in elderly men. J Strength Cond Res. 2011;25:758–766. [PubMed] [Google Scholar]

[24] Chtara M, Chaouachi A, Levin GT, Chaouachi M, Chamari K, Amri M, Laursen PB. Effect of concurrent endurance and circuit resistance training sequence on muscular strength and power development. J Strength Cond Res. 2008;22:1037–1045. [PubMed] [Google Scholar]

[25] Chtara M, Chamari K, Chaouachi M, Chaouachi A, Koubaa D, Feki Y, Millet GP, Amri M. Effects of intra-session concurrent endurance and strength training sequence on aerobic performance and capacity. Br J Sports Med. 2005;39:555–560. [PMC free article] [PubMed] [Google Scholar]

[26] García-Pallares J, Izquierdo M. Strategies to optimize concurrent training of strength and aerobic fitness for rowing and canoeing. Sports Med. 2011;41:329–343. [PubMed] [Google Scholar]

[27] Izquierdo-Gabarren M, Expósito RGT, García-Pallarés J, Sanches-Medina L, Villarreal ESS, Izquierdo M. Concurrent endurance and strength training not to failure optimizes performance gains. Med Sci Sports Exerc. 2010;42:1191–1199. [PubMed] [Google Scholar]

[28] Bell GJ, Syrotuik D, Socha T, Maclean I, Quinney HÁ. Effect of strength and endurance training on strength, testosterone, and cortisol. J Strength Cond Res. 1997;11:57–64. [Google Scholar]

[29] Bell GJ, Syrotuik D, Martin TP, Burnham R, Quinney HÁ. Effect of concurrent strength and endurance training on skeletal muscle properties and hormone concentrations in humans. Eur J Appl Physiol. 2000;81:418–427. [PubMed] [Google Scholar]

[30] Cadore EL, Izquierdo M, Dos Santos MG, Martins JB, Lhullier FL, Pinto RS, Silva RF, Kruel LFM. Hormonal responses to concurrent strength and endurance training with different exercise orders. J Strength Cond Res. 2012;26:3281–3288. [PubMed] [Google Scholar]

[31] Silva RF, Cadore EL, Kothe G, Guedes M, Alberton CL, Pinto SS, Pinto RS, Trindade G, Kruel LF. Concurrent training with different aerobic exercises. Int J Sports Med. 2012;33:627–643. [PubMed] [Google Scholar]

[32] Cadore EL, Pinto RS, Lhullier FLR, Correa CS, Alberton CL, Pinto SS, Almeida APV, Tartaruga MP, Silva EM, Kruel LFM. Physiological effects of concurrent training in elderly men. Int J Sports Med. 2010;31:689–697. [PubMed] [Google Scholar]

[33] Cadore EL, Izquierdo M, Alberton CL, Pinto RS, Conceição M, Cunha G, Radaelli R, Bottaro M, Trindade GT, Kruel LF. Strength prior to endurance intra-session exercise sequence optimizes neuromuscular and cardiovascular gains in elderly men. Exp Gerontol. 2012;47:164–169. [PubMed] [Google Scholar]

[34] Holviala J, Häkkinen A, Karavirta L, Nyman K, Izquierdo M, Gorostiaga EM, Avela J, Korhonen J, Knuutila V-P, Kraemer WJ, Häkkinen K. Effects of combined strength and endurance training on treadmill load carrying walking performance in aging men. J Strength Cond Res. 2010;24:1584–1595. [PubMed] [Google Scholar]

[35] Sillampää E, Häkkinen A, Nyman K, Cheng S, Karavirta L, Laaksonen DE, Huuhka N, Kraemer WJ, Häkkinen K. Body composition and fitness during strength and/or endurance training in older men. Med Sci Sports Exerc. 2008;40:950–958. [PubMed] [Google Scholar]

[36] Karavirta L, Tulppo MP, Laaksonen DE, Nyman K, Laukkanen RT, Kinnunen H, Häkkinen A, Häkkinen K. Heart rate dynamics after combined endurance and strength training in older men. Med Sci Sports Exerc. 2009;41:1436–1443. [PubMed] [Google Scholar]

[37] Cadore EL, Izquierdo M. How to simultaneously optimize muscle strength, power, functional capacity, and cardiovascular gains in elderly: an update. Age (Dordr) 2013. in press. [PMC free article] [PubMed]

[38] Campbell AJ, Buchner DM. Unstable disability and the fluctuations of frailty. Age Ageing. 1997;26:315–318. [PubMed] [Google Scholar]

[39] Walston J, Fried LP. Frailty and the older man. Med Clin North Am. 1999;83:1173–1194. [PubMed] [Google Scholar]

[40] Rockwood K, Mitnitski A. Frailty in relation to the accumulation of deficits. J Gerontol A Biol Sci Med Sci. 2007;62:722–727. [PubMed] [Google Scholar]

[41] Rodríguez Mañas L, Féart C, Mann G, Viña J, Chatterji S, Chodzko-Zajko W, et al. Searching for an Operational Definition of Frailty: A Delphi Method Based Consensus Statement. The Frailty Operative Definition-Consensus Conference Project. J Gerontol A Biol Sci Med Sci. 2012;68:62–67. [PMC free article] [PubMed] [Google Scholar]

[42] Kim HK, Susuki T, Saito K, Yoshida H, Kobayashi H, Kato H, Katayama M. Effects of exercise and amino acid supplementation on body composition and physical function in community-dwelling elderly japanese sarcopenic women: a randomized controlled trial. J Am Geriatr Soc. 2012;60:16–23. [PubMed] [Google Scholar]

[43] Villareal DT, Smith GI, Sinacore DR, Shah K, Mittendorfer B. Regular multicomponent exercise increases physical fitness and muscle protein anabolism in frail, obese, older adults. Obesity. 2011;19:312–318. [PMC free article] [PubMed] [Google Scholar]

[44] Freiberger E, Häberle L, Spirduso WW, Rixt Zijlstra GA. Long-term effects of three multicomponent exercise interventions on physical performance and fall-related psychological outcomes in community-dwelling older adults: a randomized controlled trial. J Am Geriatr Soc. 2012;60:437–446. [PubMed] [Google Scholar]

[45] Cadore EL, Casas-Herrero A, Zambom-Ferraresi F, Idoate F, Millor N, Gómez M, Rodriguez-Mañas L, Izquierdo M. Multicomponent exercises including muscle power training enhance muscle mass, power output, and functional outcomes in institutionalized frail nonagenarians. Age (Dordr) 2013. in press. [PMC free article] [PubMed]

[46] Cadore EL, Rodríguez-Mañas L, Sinclair A, Izquierdo M. Effects of different exercise interventions on risk of falls, gait ability and balance in physically frail older adults. A systematic review Rejuvenation Res. 2013;16:105–114. [PMC free article] [PubMed] [Google Scholar]

[47] Häkkinen K, Alen M, Kallinen M, Newton RU, Kraemer WJ. Neuromuscular adaptation during prolonged strength training, detraining and re-strength-training in middle-aged and elderly people. Eur J Appl Physiol. 2000;83:51–62. [PubMed] [Google Scholar]

[48] Slivka D, Raue U, Hollon C, Minchev K, Trappe S. Single muscle fiber adaptations to resistance training in old (>80 yr) men: evidence for limited skeletal muscle plasticity. Am J Physiol Regul Inter Comp Physiol. 2008;295:R273–280. [PMC free article] [PubMed] [Google Scholar]

[49] Pereira A, Izquierdo M, Silva AJ, Costa AM, Bastos E, González-Badillo JJ, Marques MC. Effects of high-speed power training on functional capacity and muscle performance in older women. Exp Gerontol. 2012;47:250–255. [PubMed] [Google Scholar]

[50] Vincent KR, Braith RW. Resistance and bone turnover in elderly men and women. Med Sci Sports Exer. 2002;34:17–22. [PubMed] [Google Scholar]

[51] Brentano MA, Cadore EL, Silva EM, Ambrosini AB, Coertjens M, Petkowics R, Viero I, Kruel LFM. Physiological adaptations to strength and circuit training in postmenopausal women with bone loss. J Strength Cond Res. 2008;22:1816–1825. [PubMed] [Google Scholar]

[52] Steib S, Schoene D, Pfeifer K. Dose-response relationship of resistance training in older adults: a meta-analysis. Med Sci Sports Exerc. 2010;42:902–914. [PubMed] [Google Scholar]

[53] Häkkinen K, Kraemer WJ, Newton RU, Alen M. Changes in electromyografic activity, muscle fibre and force production characteristics during heavy resistance/power strength training in middle-aged and older men and women. Acta Physiol Scand. 2001;171:51–62. [PubMed] [Google Scholar]

[54] Cannon J, Marino FE. Early-phase neuromuscular adaptations to high- and low- volume resistance training in untrained young and older women. J Sports Med. 2010;28:1505–1514. [PubMed] [Google Scholar]

[55] Galvão DA, Taafe DR. Single- vs. multiple-set resistance training: recent developments in the controversy. J Strength Cond Res. 2005;18:660–667. [PubMed] [Google Scholar]

[56] Radaelli R, Botton CE, Wilhelm EN, Bottaro M, Lacerda F, Gaya A, Moraes K, Peruzzolo A, Brown LE, Pinto RS. Low- and high-volume strength training induces similar neuromuscular improvements in muscle quality in elderly women. Exp Gerontol. 2013;48:710–716. [PubMed] [Google Scholar]

[57] Farinatti PT, Geraldes AA, Bottaro MF, Lima MV, Albuquerque RB, Fleck SJ. Effects of different resistance training frequencies on the muscle strength and functional performance of active women older than 60 years. J Strength Cond Res. 2013;27:2225–2234. [PubMed] [Google Scholar]

[58] Holviala J, Häkkinen A, Alen M, Sallinen J, Häkkinen K. Effects of prolonged and maintenance strength training on force production, walking, and balance in aging women and men. Scand J Med Sci Sports. 2012. in press. [PubMed]

[59] Correa CS, Laroche DP, Cadore EL, Reischak-Oliveira A, Bottaro M, Kruel LFM, Tartaruga MP, Radaelli R, Wilhelm EN, Lacerda FC, Gaya AR, Pinto RS. 3 types of strength training in older women. Int J Sports Med. 2012;33:962–969. [PubMed] [Google Scholar]

[60] Häkkinen K, Kallinen M, Izquierdo M, Jokelainen K, Lassila H, Mälkiä E, Kraemer WJ, Newton RU, Alen M. Changes in agonist-antagonist EMG, muscle CSA, and force during strength training in middle-aged and older people. J Appl Physiol. 1998;84:1341–1349. [PubMed] [Google Scholar]

[61] Nogueira W, Gentil P, Mello SNM, Oliveira RJ, Bezerra AJC, Bottaro M. Effects of power training on muscle thickness of older men. Int J Sports Med. 2009;30:200–204. [PubMed] [Google Scholar]

[62] Kraemer WJ, Häkkinen K, Newton RU, Nindl BC, Volek JS, Mccormick M, Gotshalk LA, Gordon SE, Fleck SJ, Campbell WW, Putukian M, Evans WJ. Effects of resistance training on hormonal response patterns in younger vs. older men. J Appl Physiol. 1999;87:982–992. [PubMed] [Google Scholar]

[63] Häkkinen K, Hakkinen A. Neuromuscular adaptations during intensive strength training in middle-aged and elderly males and females. Electromyogr Clin Neurophysiol. 1995;35:137–147. [PubMed] [Google Scholar]

[64] Häkkinen K, Newton RU, Gordon S, Mccornick M, Volek J, Nindl B, et al. Changes in muscle morphology, electromyographic activity and force production characteristics during progressive strength training in young and older men. J Gerontol A Biol Sci Med Sci. 1998;53:B415–423. [PubMed] [Google Scholar]

[65] Pinto RS, Correa CS, Radaelli R, Cadore EL, Brown LE, Bottaro M. Short-term strength training improves muscle quality and functional capacity of elderly women. Age (Dordr) 2013. in press [PMC free article] [PubMed]

[66] Ferrari R, Kruel LF, Cadore EL, Alberton CL, Izquierdo M, Conceição M, Pinto RS, Radaelli R, Wilhelm E, Bottaro M, Ribeiro JP, Umpierre D. Efficiency of twice weekly concurrent training in trained elderly men. Exp Gerontol. 2013;48:1236–1242. [PubMed] [Google Scholar]

[67] Häkkinen K, Kallinen M, Linnamo V, Pastinen UM, Newton RU, Kraemer WJ. Neuromuscular adaptations during bilateral versus unilateral strength training in middle-aged and elderly men and women. Acta Physiol Scand. 1996;158:77–88. [PubMed] [Google Scholar]

[68] Cannon J, Kay D, Tarpenning KM, Marino FE. Comparative effects of resistance training on peak isometric torque, muscle hypertrophy, voluntary activation and surface EMG between young and elderly women. Clin Physiol Funct Imaging. 2007;27:91–100. [PubMed] [Google Scholar]

[69] Fiatarone MA, Marks EC, Ryan ND, Meredith CN, Lipsitz LA, Evans WJ. High-intensity strength training in nonagenarians. Effects on skeletal muscle. JAMA. 1990;263:3029–3034. [PubMed] [Google Scholar]

[70] Serra-Rexach JA, Bustamante-Ara N, Hierro Villarán M, González Gil P, Sanz Ibáñez MJ, Blanco Sanz N, et al. Short-term, light- to moderate-intensity exercise training improves leg muscle strength in the oldest old: a randomized controlled trial. J Am Geriatr Soc. 2011;59:594–602. [PubMed] [Google Scholar]

[71] Hennessey JV, Chromiak JA, Ventura SD, Reinert SE, Puhl J, Kiel DP, Rosen CJ, Vandenburgh H, MacLean DB. Growth hormone administration and exercise effects on muscle fiber type and diameter in moderately frail older people. J Am Geriatr Soc. 2001;49:852–858. [PubMed] [Google Scholar]

[72] Lustosa LP, Silva JP, Coelho FM, Pereira DS, Paretoni AN, Pereira LSM. Impact of resistance exercise program on functional capacity and muscular strength of knee extensor in pre-frail community-dwelling older women: a randomized crossover trial. Rev Bras Fisioter. 2011;15:318–324. [PubMed] [Google Scholar]

[73] Sullivan DH, Roberson PK, Smith ES, Price JA, Bopp MM. Effects of muscle strength training and megestrol acetate on strength, muscle mass, and function in frail older people. J Am Geriatr Soc. 2007;55:20–28. [PubMed] [Google Scholar]

[74] Latham NK, Anderson CS, Lee A, Bennett DA, Moseley A, Cameron ID, for the Fitness Collaborative Group A randomized, controlled trial of quadriceps resistance exercise and vitamin D in frail older people: the frailty interventions trial in elderly subjects (FITNESS) J Am Geriatr Soc. 2003;51:291–299. [PubMed] [Google Scholar]

[75] Seals DR, Hagberg JM, Hurley BF, Ehsani AA, Holloszy JO. Endurance training in older men and women: I. Cardiovascular responses to exercise. J Appl Physiol. 1984;57:1024–1031. [PubMed] [Google Scholar]

[76] Meredith CN, Frontera WR, Fisher EC, Hughes VA, Herland JC, Edwards J, Evans WJ. Peripheral effects of endurance training in young and old subjects. J Appl Physiol. 1989;66:2844–2849. [PubMed] [Google Scholar]

[77] Beere PA, Russell SD, Morey MC, Kitzman DW, Higginbotham MB. Aerobic exercise training can reverse age-related peripheral circulatory changes in healthy older men. Circulation. 1999;100:1085–1094. [PubMed] [Google Scholar]

[78] Hepple RT, Mackinnon SLM, Thomas SG, Goodman JM, Plyley MJ. Quantitating the capillary supply and response to resistance training in older men. Eur J Appl Physiol. 1997;433:238–244. [PubMed] [Google Scholar]

[79] Levy WC, Cerqueira MD, Harp GD, Johannessen K-A, Abrass IB, Schwartz RS, Stratton JR. Effect of endurance training on heart rate variability at rest in healthy young men and older men. Am J Cardiol. 1998;82:1236–1241. [PubMed] [Google Scholar]

[80] Meijer EP, Westerterp KR, Verstappen FTJ. Effect of exercise training on physical activity and substrate utilization in the elderly. Int J Sports Med. 2000;21:499–504. [PubMed] [Google Scholar]

[81] Okazaki K, Kamijo Y-I, Takeno Y, Okumoto T, Masuki S, Nose H. Effect of exercise training on thermoregulatory responses and blood volume in older men. J Appl Physiol. 2002;96:1630–1637. [PubMed] [Google Scholar]

[82] Cadore EL, Pinto RS, Alberton CL, Pinto SS, Lhullier FLR, Tartaruga MP, Correa CS, Almeida APV, Silva EM, Laitano O, Kruel LFM. Neuromuscular economy, strength and endurance in healthy elderly men. J Strength Cond Res. 2011;25:997–1003. [PubMed] [Google Scholar]

[83] Lee DC, Sui X, Artero EG, Lee IM, Church TS, McAuley PA, Stanford FC, Kohl HW, Blair SN. Long-term effects of changes in cardiorespiratory fitness and body mass index on all-cause and cardiovascular disease mortality in men: the Aerobics Center Longitudinal Study. Circulation. 2011;124:2483–2490. [PMC free article] [PubMed] [Google Scholar]

[84] Cadore EL, Izquierdo M, Conceição M, Radaelli R, Pinto RS, Baroni BM, Vaz MA, Alberton CL, Pinto SS, Cunha G, Bottaro M, Kruel LF. Echo intensity is associated with skeletal muscle power and cardiovascular performance in elderly men. Exp Gerontol. 2012;47:473–478. [PubMed] [Google Scholar]

[85] Lord SR, Castell S, Corcoran J, Dayhew JD, Matters B, Shan A, Williams P. The effect of group exercise on physical functioning and falls in frail older people living in retirement villages: a randomized controlled trial. J Am Geriatr Soc. 2003;51:1685–1692. [PubMed] [Google Scholar]

[86] Hagedorn DK, Holm E. Effects of traditional physical training and visual computer feedback training in frail elderly patients: a randomized intervention study. Eur J Phys Rehabil Med. 2010;46:159–168. [PubMed] [Google Scholar]

[87] Barnett A, Smith B, Lord SR, Williams M, Baumand A. Community-based group exercise improves balance and reduces falls in at-risk older people: a randomised controlled trial. Age Ageing. 2003;32:407–414. [PubMed] [Google Scholar]

[88] Ehsani AA, Spina RJ, Peterson LR, Rinder MR, Glover KL, Villareal DT, Binder EF, Holloszy JO. Attenuation of cardiovascular adaptations to exercise in frail octogenarians. J Appl Physiol. 2003;95:1781–1788. [PubMed] [Google Scholar]

[89] Häkkinen K, Alen M, Kraemer WJ, Gorostiaga EM, Izquierdo M, Rusko H, Mikkola J, Häkkinen A, Valkeinen H, Kaarakainen E, Romu S, Erola V, Ahtiainen J, Paavolainen L. Neuromuscular adaptations during concurrent strength and endurance training versus strength training. J Appl Physiol. 2003;89:42–52. [PubMed] [Google Scholar]

[90] Dolezal BA, Potteiger JA. Concurrent resistance and endurance training influence basal metabolic rate in nondieting individuals. J Appl Physiol. 1998;85:695–700. [PubMed] [Google Scholar]

[91] Gravelle BL, Blessing DL. Physiological adaptation in women concurrently training for strength and endurance. J Strength Cond Res. 2000;14:5–13. [Google Scholar]

[92] McCarthy JP, Pozniak MA, Agre JC. Neuromuscular adaptations to concurrent strength and endurance training. Med Sci Sports Exerc. 2002;34:511–519. [PubMed] [Google Scholar]

[93] Izquierdo M, Häkkinen K, Ibañez J, Kraemer WJ, Gorostiaga EM. Effects of combined resistance and cardiovascular training on strength, power, muscle cross-sectional area, and endurance markers in middle-aged men. Eur J Appl Physiol. 2005;94:70–75. [PubMed] [Google Scholar]

[94] Karavirta L, Häkkinen A, Sillanpää E, Garcia-Lopez D, Kauhanen A, Haapasaari A, Alen M, Pakarinen A, Kraemer WJ, Izquierdo M, Gorostiaga EM, Häkkinen K. Effects of combined endurance and strength training on muscle strength, power and hypertrophy in 40–67-year-old men. Scand J Med Sci Sports. 2011;21:402–411. [PubMed] [Google Scholar]

[95] Cadore EL, Izquierdo M, Pinto SS, Alberton CL, Pinto RS, Baroni BM, Vaz MA, Lanferdini FJ, Radaelli R, González-Izal M, Bottaro M, Kruel LF. Neuromuscular adaptations to concurrent training in the elderly: effects of intrasession exercise sequence. Age (Dordr) 2013. in press. [PMC free article] [PubMed]

[96] Holviala J, Kraemer WJ, Sillampää E, Karpinen H, Avela J, Kauhanen A, Häkkinen A, Häkkinen K. Effects of strength, endurance and combined training on muscle strength, walking speed and dynamic balance in aging men. Eur J Appl Physiol. 2011;112:1335–1347. [PubMed] [Google Scholar]

[97] Sillampää E, Häkkinen A, Punnonen K, Häkkinen K, Laaksonen DE. Effects of strength and endurance training on metabolic risk factors in healthy 40–65-year-old men. Scand J Med Sci Sports. 2009;19:885–895. [PubMed] [Google Scholar]

[98] Sillampää E, Laaksonen DE, Häkkinen A, Karavirta L, Jensen B, Kraemer WJ, Nyman K, Häkkinen K. Body composition, fitness, and metabolic health during strength and endurance training and their combination in middle-aged and older women. Eur J Appl Physiol. 2009;106:285–296. [PubMed] [Google Scholar]

[99] Astrand I, Astrand PO, Hallback I, Kilbom A. Reduction in maximal oxygen uptake with age. J Appl Physiol. 1973;35:649–654. [PubMed] [Google Scholar]

[100] Cadore EL, Izquierdo M. New strategies for the concurrent strength-, power-, and endurance-training prescription in elderly individuals. J Am Med Dir Soc. 2013;14:623–624. [PubMed] [Google Scholar]


Page 2

Neuromuscular adaptations to strength training in health elderly

AuthorPeriod and weekly frequencyTraining volume and intensityMain results
Häkkinen and Häkkinen [63]12 wk; 2 times/wk2–5 sets, 3 – 15 repetitions, 30 – 80% of 1RM. Slow and explosive muscle contractions.↑PT (20%);↑EMG VL, VM and RF (∼20%);

↑CSA QF (9%).

Häkkinen et al. [67]12 wk; 2 times/wk2–6 sets, 8–15 repetitions (40–90% of 1RM) unilateral (UNI) and bilateral (BIL). Slow and explosive muscle contractions.↑1RM (13–19%);↑EMG (9–19%);

↑CSA QF (11–14%).

Häkkinen et al. [60]24 wk; 2 times/wk2–5 sets, 3 – 15 repetitions, 30 – 80% of 1RM. Slow and explosive muscle contractions.↑1RM (21%);↑PT (36%);↑RFD (40%);↑SJ (24%);

↑EMG VL and VM.

Kraemer et al. [62]10 wk; 3 times/wkOndulatory periodization: 2–5 sets of 3–5RM; 8–10RM and 12–15RM.↑1RM (10%)*;
↑CSA QF (6%).
Häkkinen et al. [64]24 wk; 2 times/wk2–5 sets, 3 – 15 repetitions, 30 – 80% of 1RM. Slow and explosive muscle contractions.↑PT (16%);↑EMG VL and VM;↑CSA QF (8,5%);

↑CSA fiber type I and II.

Häkkinen et al. [47]10 wk; 2 times/wk3–6 sets of 6–15 repetitions (50–80% of 1RM). Slow and explosive muscle contractions.↑ 1RM (29%);↑EMG VL and VM; ↑SJ (22%);

↑CSA QF (7%).

Häkkinen et al. [53]24 wk; 2 times/wk3–5 sets, 6 – 15 repetitions, 30 – 80% of 1RM. Slow and explosive muscle contractions.↑PT (36%);↑EMG VL and VM;↑RFD (40%);

↑1RM (21%).

Izquierdo et al. [19]16 wk; 2 times/wk2–5 sets, 3 – 15 repetitions, 50 – 80% of 1RM. Slow and explosive muscle contractions.↑1RM (25–41%);↑PT (26%);↑ power at 20 – 80% of 1RM (15–60%);

↑CSA QF (11%)

Izquierdo et al. [3]16 wk; 2 times/wk3–4 sets, 10–15 repetitions, 50–80% of 1RM. Slow and explosive muscle contractions.↑CSA QF (H%);↑maximal workload at cycle ergometer;

↑load at 2 and 4mmol.L−1 at cycle ergometer;

Bottaro et al. [11]10 wk; 2 times/wk3 sets of 8–10 repetitions (40 – 60% of 1RM); Slow vs. explosive contractions (EC)↑1RM (25%) in both 2 groups;
↑power at 60% of 1RM, greater in EC (31 vs. 8%).
Cannon et al. [68]10 wk; 2 times/wk3 sets of 10 repetitions (50–75% of 1RM).↑PT (18%);↑EMG VL and VM (21%);

↑CSA QF (11%).

Slivka et al. [48]12 wk; 3 times/wk3 sets of 10 repetitions (70% of 1RM).↑1RM (41%);
↑CSA QF (2%).
Nogueira et al. [61]10 wk; 2 times/wk3 sets of 8–10 repetitions (40 – 60% of 1RM): Slow vs. explosive contractions (EC)↑RF muscle thickness in EC (11%)
↑BB muscle thickness in both groups (7–14%)
Correa et al. [59]12 wk; 2 times/wkFirst 6 weeks: 2 sets of 12–20RM; Last 6 weeks: 3 sets of 8–12RM; Three ST groups: ST slow-speed (TG); high-speed (PG); and, plyometric training (RG).↑1RM (20–22%) in the 3 groups;↑QF MT (22%) in the 3 groups;↑EMG in the 3 groups;↑RFD only in the RG group;

↑jump height (25%) only in the RG group;

Pinto et al. [65]6wk; 2 times/wk2 sets. Intensity started at 20RM, progressing to 10RM↑1RM (23%)↑QF MT (8–18%);

↑QF MQ (15%).

Radaelli et al. [56]13 wk; 2 times/wk1 (low-volume group) or 3 (high-volume group) sets per exercise; started at 20RM, progressing to 10RM.↑1RM (25–38%);↑EMG (22–28%);↑MT (8–14%);

↑MQ (22–25%).