What foods have nitric oxide

1. O’Donoghue G., Cunninggham C., Murphy F., Woods C., Aagaard-Hansen J. Assessment and management of risk factors for the prevention of lifestyle-related disease: A cross-sectional survey of current activities, barriers and perceived training needs of primary care physiotherapists in the Republic of Ireland. Physiotharapy. 2014;100:116–122. doi: 10.1016/j.physio.2013.10.004. [PubMed] [CrossRef] [Google Scholar]

2. Ford E.S., Bergmann M.M., Boeing H., Capewell S. Healthy lifestyle behaviors and all-cause mortality among adults in the United States. Prev. Med. 2012;55:23–27. doi: 10.1016/j.ypmed.2012.04.016. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

3. Liu S., Manson J.E., Lee I.M., Cole S.R., Hennekens C.H., Willett W.C., Buring J. Fruit and vegetable intake and risk of cardiovascular disease: The women’s health study. Am. J. Cin. Nutr. 2000;72:922–928. [PubMed] [Google Scholar]

4. Joshipura K.J., Hu F.B., Manson J.E., Stampfer M.J., Rimm E.B., Speizer F.E., Colditz G., Ascherio A., Rosner B., Spiegelman D., et al. The effect of fruit and vegetable intake on risk for coronary heart disease. Ann. Intern. Med. 2001;134:1106–1114. doi: 10.7326/0003-4819-134-12-200106190-00010. [PubMed] [CrossRef] [Google Scholar]

5. Bazzano L.A., He J., Ogden L.G., Loria C.M., Vupputuri S., Myers L., Whelton P.K. Fruit and vegerable intake and risk of cardiovascular disease in US adults: The first National Health and Nutrition Examination Survey Epidemiologic Follow-up Study. Am. J. Clin. Nutr. 2002;76:93–99. [PubMed] [Google Scholar]

6. Daucher L., Amouyel P., Hercberg S., Dallongeville J. Fruit and vegetable consumption and risk of coronary heart disease: A meta-analysis of cohort studies. J. Nutr. 2006;136:2588–2593. [PubMed] [Google Scholar]

7. Joshipura K.J., Ascherio A., Manson J.E., Stampfer M.J., Rimm E.B., Speizer F.E., Hennekens C.H., Spiegelman D., Willett W.C. Fruit and vegetable intake in relation to risk of ischemic stroke. JAMA. 1999;282:1233–1239. doi: 10.1001/jama.282.13.1233. [PubMed] [CrossRef] [Google Scholar]

8. Davignon J., Ganz P. Role of endothelial dysfunction in atherosclerosis. Circulation. 2004;109:III-27–III-32. doi: 10.1161/01.CIR.0000131515.03336.f8. [PubMed] [CrossRef] [Google Scholar]

9. Hess D.T., Matsumoto A., Kim S.O., Marshall H.E., Stamler J.S. Protein S-nitrosylation: Purview and parameters. Nat. Rev. Mol. Cell Biol. 2005;6:150–165. doi: 10.1038/nrm1569. [PubMed] [CrossRef] [Google Scholar]

10. Bryan N.S., Fernandez B.O., Bauer S.M., Garcia-Saura M.F., Milsom A.B., Rassaf T., Maloney R.E., Bharti A., Rodriguez J., Feelisch M. Nitrite is a signaling molecule and regulator of gene expression in mammalian tissues. Nat. Chem. Biol. 2005;1:290–297. doi: 10.1038/nchembio734. [PubMed] [CrossRef] [Google Scholar]

11. West M.B., Hill B.G., Xuan Y.T., Bhatnagar A. Protein glutathiolation by nitric oxide: An intracellular mechanism regulating redox protein modification. FASEB J. 2006;20:E1049–E1060. doi: 10.1096/fj.06-5843fje. [PubMed] [CrossRef] [Google Scholar]

12. Larsen F.J., Schiffer T.A., Borniquel S., Sahlin K., Ekblom B., Lundberg J.O., Weitzberg E. Dietary inorganic nitrate improves mitochondrial efficiency in humans. Cell Metab. 2011;13:149–159. doi: 10.1016/j.cmet.2011.01.004. [PubMed] [CrossRef] [Google Scholar]

13. Nair K.S., Irving B.A., Lanza I.R. Can dietary nitrates enhance the efficiency of mitochondria? Cell Metab. 2011;13:117–118. doi: 10.1016/j.cmet.2011.01.013. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

14. Melino G., Bernassola F., Knight R.A., Corasaniti M.T., Nistico G., Finazzi-Agro A. S-nitrosylation regulates apoptosis. Nature. 1997;388:432–433. doi: 10.1038/41237. [PubMed] [CrossRef] [Google Scholar]

15. Weitzberg E., Lundberg J.O. Nonenzymatic nitric oxide production in humans. Nitric Oxide. 1998;2:1–7. doi: 10.1006/niox.1997.0162. [PubMed] [CrossRef] [Google Scholar]

16. Sindelar J.J., Milkowski A.L. Human safety controversies surrounding nitrate and nitrite in the diet. Nitric Oxide. 2012;26:259–266. doi: 10.1016/j.niox.2012.03.011. [PubMed] [CrossRef] [Google Scholar]

17. Ysart G., Miller P., Barrett G., Farrington D., Lawrance P., Harrison M. Dietary expoures to nitrate in the UK. Food Addit. Contamin. 1999;16:521–532. doi: 10.1080/026520399283669. [PubMed] [CrossRef] [Google Scholar]

18. Lundberg J.O., Weitzberg E., Gladwin M.T. The nitrate-nitrite-nitric oxide pathway in physiology and therapeutics. Nat. Rev. Drug Discov. 2008;7:156–167. doi: 10.1038/nrd2466. [PubMed] [CrossRef] [Google Scholar]

19. Lundberg J.O., Gladwin M.T., Ahluwalia A., Benjamin N., Bryan N.S., Butler A., Cabrales P., Fago A., Feelisch M., Ford P.C., et al. Nitrate and nitrite in biology, nutrition and therapeutics. Nat. Chem. Biol. 2009;5:865–869. doi: 10.1038/nchembio.260. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

20. Lundberg J.O., Govoni M. Inorganic nitrate is a possible source for systemic generation of nitric oxide. Free Radic. Biol. Med. 2004;37:395–400. doi: 10.1016/j.freeradbiomed.2004.04.027. [PubMed] [CrossRef] [Google Scholar]

21. Spiegelhalder B., Eisenbrand G., Preussmann R. Influence of dietary nitrate on nitrite content of human saliva: Possible relevance to in vivo formation of N-nitroso compounds. Food Cosmet. Toxicol. 1976;14:545–548. doi: 10.1016/S0015-6264(76)80005-3. [PubMed] [CrossRef] [Google Scholar]

22. Lundberg J.O., Hellstrom P.M., Lundberg J.M., Alving K. Greatly increased luminal nitric oxide in ulcerative colitis. Lancet. 1994;344:1673–1674. doi: 10.1016/S0140-6736(94)90460-X. [PubMed] [CrossRef] [Google Scholar]

23. McKnight G.M., Smith L.M., Drummond R.S., Duncan C.W., Golden M., Benjamin N. Chemical synthesis of nitric oxide in the stomach from dietary nitrate in humans. Gut. 1997;40:211–214. doi: 10.1136/gut.40.2.211. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

24. Takahama U., Oniki T., Hirota S. Oxidation of quercetin by salivary components. Quercetin-dependent reduction of salivary nitrite under acidic conditions producing nitric oxide. J. Agric. Food Chem. 2002;50:4317–4322. doi: 10.1021/jf011697q. [PubMed] [CrossRef] [Google Scholar]

25. Björne H., Peterson J., Phillipson M., Weitzberg E., Holm L., Lundberg J.O. Nitrite in saliva increases gastric mucosal blood flow and mucus thickness. J. Clin. Investig. 2004;113:106–114. doi: 10.1172/JCI19019. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

26. Petersson J., Phillipson M., Jansson E.A., Patzak A., Lundberg J.O., Holm L. Dietary nitrate increases gastric mucosal blood flow and mucosal defence. Am. J. Physiol. Gastrointest. Liver Physiol. 2007;292:G718–G724. doi: 10.1152/ajpgi.00435.2006. [PubMed] [CrossRef] [Google Scholar]

27. Govoni M., Jansson E.A., Weitzberg E., Lundberg J.O. The increase in plasma nitrite after a dietary nitrate load is markedly attenuated by an antibacterial mouthwash. Nitric Oxide. 2008;19:333–337. doi: 10.1016/j.niox.2008.08.003. [PubMed] [CrossRef] [Google Scholar]

28. Hord N.G., Tang Y., Bryan N.S. Food sources of nitrates and nitrites: The physiologic context for potential health benefits. Am. J. Clin. Nutr. 2009;90:1–10. doi: 10.3945/ajcn.2008.27131. [PubMed] [CrossRef] [Google Scholar]

29. Bryan N.S., Calvert J.W., Elrod J.W., Gundewar S., Ji S.Y., Lefer D.J. Dietary nitrite supplementation protects against ischemia-reperfusion injury. Proc. Natl. Acad. Sci. USA. 2007;104:19144–19149. doi: 10.1073/pnas.0706579104. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

30. Raat N.J.H., Noguchi A.C., Liu V.B., Raghavachari N., Liu D., Xu X., Shiva S., Munson P.J., Gladwin M.T. Dietary nitrate and nitrite modulate blood and organ nitrite and the cellular ischemic stress response. Free Radic. Biol. Med. 2009;47:510–517. doi: 10.1016/j.freeradbiomed.2009.05.015. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

31. Cosby K., Partovi K.S., Crawford J.H., Patel R.P., Reiter C.D., Martyr S., Yang B.K., Waclawiw M.A., Zalos G., Xu X., et al. Nitrite reduction to nitric oxide by deoxyhemoglobin vasodilates the human circulation. Nat. Med. 2003;9:1498–1505. doi: 10.1038/nm954. [PubMed] [CrossRef] [Google Scholar]

32. Ormerod J.O.M., Ashrafian H., Maher A.R., Arif S., Steeples V., Born G.V.R., Egginton S., Feelisch M., Watkins H., Frenneaux M.P. The role of vascular myoglobin in nitrite-mediated blood vessel relaxation. Cardiovasc. Res. 2011;89:560–565. doi: 10.1093/cvr/cvq299. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

33. Shiva S., Sack M.N., Greer J.J., Duranski M., Ringwood L.A., Burwell L., Wang X., MacArthur P.H., Shoja A., Raghavachari N., et al. Nitrite augments tolerance to ischemia/reperfusion injury via the modulation of mitochondrial electron transfer. J. Exp. Med. 2007;204:2089–2102. doi: 10.1084/jem.20070198. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

34. Sonoda K., Ohtake K., Kubo Y., Uchida H., Uchida M., Natsume H., Kobayashi M., Kobayashi J. Aldehyde dehydrogenase 2 partly mediates hypotensive effect of nitrite on L-NAME-induced hypertension in normoxic rat. Clin. Exp. Hypertens. 2014;36:410–418. doi: 10.3109/10641963.2013.846355. [PubMed] [CrossRef] [Google Scholar]

35. Richardson R.S., Noyszewski E.A., Kendrick K.F., Leigh J.S., Wagner P.D. Myoglobin O2 desaturation during exercise. Evidence of limited O2 transport. J. Clin. Investig. 1996;96:1916–1926. doi: 10.1172/JCI118237. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

36. Larsen F.J., Weitzberg E., Lundberg J.O., Ekblom B. Dietary nitrate reduces maximal oxygen consumption while maintaining work performance in maximal exercise. Free Radic. Biol. Med. 2010;48:342–347. doi: 10.1016/j.freeradbiomed.2009.11.006. [PubMed] [CrossRef] [Google Scholar]

37. Carlström M., Persson A.E.G., Larsson E., Hezel M., Scheffer P.G., Teerlink T., Weitzberg E., Lundberg J.O. Dietary nitrate attenuates oxidative stress, prevents cardiac and renal injuries, and reduces blood pressure in salt-induced hypertension. Cardiovasc. Res. 2011;89:574–585. doi: 10.1093/cvr/cvq366. [PubMed] [CrossRef] [Google Scholar]

38. Baliga R.S., Milsom A.B., Ghosh S.M., Trinder S.L., MacAllister R.J., Ahluwalia A., Hobbs A.J. Dietary nitrate ameliorates pulmonary hypertension cytoprotective role for endothelial nitric oxide synthase and xanthine oxidoreductase. Circulation. 2012;125:2922–2932. doi: 10.1161/CIRCULATIONAHA.112.100586. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

39. Ashmore T., Fernandez B.O., Branco-Price C., West J.A., Cowburn A.S., Heather L.C., Griffin J.L., Johnson R.S., Feelisch M., Murray A.J. Dietary nitrate increases arginine availability and protects mitochondrial complex I and energetics in the hypoxic rat heart. J. Physiol. 2014;592:4715–4731. doi: 10.1113/jphysiol.2014.275263. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

40. Stamler J.S., Lamas S., Fang F.C. Nitrosylation: The prototypic redox-based signaling mechanism. Cell. 2001;106:675–683. doi: 10.1016/S0092-8674(01)00495-0. [PubMed] [CrossRef] [Google Scholar]

41. Knobeloch L., Salna B., Hogan A., Postle J., Anderson H. Blue babies and nitrate-contaminated well water. Environ. Health Perspect. 2000;108:675–678. doi: 10.1289/ehp.00108675. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

42. Comly H.H. Cyanosis in infants caused by nitrates in well water. JAMA. 1945;129:112–116. doi: 10.1001/jama.1945.02860360014004. [PubMed] [CrossRef] [Google Scholar]

43. Avery A.A. Infantile methemoglobinemia: Reexamining the role of drinking water nitrates. Environ. Health Perspect. 1999;107:583–586. doi: 10.1289/ehp.99107583. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

44. Mensinga T.T., Speijers G.J., Meulenbelt J. Health implications of exposure to environmental nitrogenous compounds. Toxicol. Rev. 2003;22:41–51. doi: 10.2165/00139709-200322010-00005. [PubMed] [CrossRef] [Google Scholar]

45. Gangolli S.D., van den Brandt P.A., Feron V.J., Janzowskyd C., Koemane J.H., Speijersf G.J.A., Spiegelhalderg B., Walkerh R., Wishnoki J.S. Nitrate, nitrite and N-nitroso compounds. Eur. J. Pharmacol. 1994;292:1–38. doi: 10.1016/0926-6917(94)90022-1. [PubMed] [CrossRef] [Google Scholar]

46. Lin P.H., Aickin M., Champagne C., Craddick S., Sacks F.M., McCarron P., Most-Windhauser M.M., Rukenbrod F., Haworth L., Dash-Sodium Collaborative Research Group Food group sources of nutrients in the dietary pattern s of the DASH-Sodium trial. J. Am. Diet. Assoc. 2003;103:488–496. [PubMed] [Google Scholar]

47. Kobayashi J. Nitric oxide and insulin resistance. Immunoendocrinology. 2015;2:1. [Google Scholar]

48. Das U.N. Insulin: An endogenous cardioprotector. Curr. Opin. Crit. Care. 2003;9:375–383. doi: 10.1097/00075198-200310000-00007. [PubMed] [CrossRef] [Google Scholar]

49. Abel E.D. Insulin signaling in heart muscle: Lessons from genetically engineered mouse models. Curr. Hypertens. Rep. 2004;6:416–423. doi: 10.1007/s11906-004-0034-4. [PubMed] [CrossRef] [Google Scholar]

50. Kim J., Montagnani M., Koh K.K., Quon M.J. Reciprocal relationships between insulin resistance and endothelial dysfunction: Molecular and pathphysiological mechanismns. Circulation. 2006;113:1888–1904. doi: 10.1161/CIRCULATIONAHA.105.563213. [PubMed] [CrossRef] [Google Scholar]

51. Yu Q., Gao F., Ma X.L. Insulin says NO to cardiovascular disease. Cardiovasc. Res. 2011;89:516–524. doi: 10.1093/cvr/cvq349. [PubMed] [CrossRef] [Google Scholar]

52. Wang H., Wang A.X., Aylor K., Barrett E.J. Nitric oxide directly promotes vascular endothelial insulin transport. Diabetes. 2013;62:4030–4042. doi: 10.2337/db13-0627. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

53. Kim F., Pham M., Rizzo N.O., Morton G.J., Wisse B.E., Kirk E.A., Chait A., Schwartz M.W. Vascular inflammation, insulin resistance and reduced nitric oxide production precede the onset of peripheral insulin resistance. Arterioscler. Thromb. Vasc. Biol. 2008;28:1982–1988. doi: 10.1161/ATVBAHA.108.169722. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

54. Laffranchi R., Gogvadze V., Richter C., Spinas G.A. Nitric oxide (nitrogen monoxide, NO) stimulates insulin secretion by inducing calcium release from mitochondria. Biochem. Biophys. Res. Commun. 1995;217:584–591. doi: 10.1006/bbrc.1995.2815. [PubMed] [CrossRef] [Google Scholar]

55. Nystrom T., Ortsater H., Huang Z., Zhang F., Larsen F.J., Weitzberg E., Lundbergb J.O., Sjöholma A. Inorganic nitrite stimulates pancreatic islet blood flow and insulin secretion. Free Radic. Biol. Med. 2012;53:1017–1023. doi: 10.1016/j.freeradbiomed.2012.06.031. [PubMed] [CrossRef] [Google Scholar]

56. Lee W.J., Kim H.S., Park H.S., Kim M.O., Kim M., Yun J.Y., Kim E.H., Lee S.A., Lee S.H., Koh E.H., et al. Nitric oxide increases Insulin sensitivity in skeletal muscle by improving mitochondrial function and insulin signaling. Korean Diabetes J. 2009;33:198–205. doi: 10.4093/kdj.2009.33.3.198. [CrossRef] [Google Scholar]

57. Rizzo N.O., Maloney E., Pham M., Luttrell I., Wessells H., Tateya S., Daum G., Handa P., Schwartz M.W., Kim F. Reduced NO-cGMP signaling contributes to vascular inflammation and insulin resistance induced by high-fat feeding. Arterioscler. Thromb. Vasc. Biol. 2010;30:758–765. doi: 10.1161/ATVBAHA.109.199893. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

58. Richey J.M. The vascular endothelium, a benign restrictive barrier? No! Role of nitric oxide in regulating insulin action. Diabetes. 2013;62:4006–4008. doi: 10.2337/db13-1395. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

59. Khoo N.K.H., Mo L., Zharikov S., Kamga C., Quesnelle K., Golin-Bisello F., Li L., Wang Y., Shiva S. Nitrite augments glucose uptake in adipocytes through the protein kinase A-dependent stimulation of mitochondrial fusion. Free Radic. Biol. Med. 2014;70:45–53. doi: 10.1016/j.freeradbiomed.2014.02.009. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

60. Draznin B. Molecular mechanisms of insulin resistance: Serine phosphorylation of insulin receptor substrate-1 and increased expression of p85α. The two sides of a coin. Diabetes. 2006;55:2392–2397. doi: 10.2337/db06-0391. [PubMed] [CrossRef] [Google Scholar]

61. Carvalho-Filho M.A., Ueno M., Hirabara S.M., Seabra A.B., Carvalheria J.B.C., Oliveira M.G., Velloso L.A., Curi R., Saad M.J.A. S-nitrosation of the insulin receptor, insulin receptor substrate 1, and protein kinase B/Akt: A novel mechanism of insulin resistance. Diabetes. 2005;54:959–967. doi: 10.2337/diabetes.54.4.959. [PubMed] [CrossRef] [Google Scholar]

62. Fisher-Wellman K.H., Neufer P.D. Linking mitochondrial bioenergetics to insulin resistance via redox biology. Trends Endocrinol. Metab. 2012;23:142–152. doi: 10.1016/j.tem.2011.12.008. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

63. De Luca C., Olefsky J.M. Inflammation and insulin resistance. FEBS Lett. 2008;582:97–105. doi: 10.1016/j.febslet.2007.11.057. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

64. Hsu M.F., Meng T.C. Enhancement of insulin responsiveness by nitric oxide-mediated inactivation of protein-tyrosine phosphatases. J. Biol. Chem. 2010;285:7919–7928. doi: 10.1074/jbc.M109.057513. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

65. Jiang H., Torregrossa A.C., Potts A., Pierini D., Aranke M., Garg H.K., Bryan N.S. Dietary nitrite improves insulin signaling through GLUT4 translocation. Free Rad. Biol. Med. 2014;67:51–57. doi: 10.1016/j.freeradbiomed.2013.10.809. [PubMed] [CrossRef] [Google Scholar]

66. Carlström M., Larsen F.J., Nystrom T., Hazel M., Borniquel S., Weitzberg E., Lundberg J.O. Dietary inorganic nitrate reverses features of metabolic syndrome in endothelial nitric oxide synthase-deficient mice. Proc. Natl. Acad. Sci. USA. 2010;107:17716–17720. doi: 10.1073/pnas.1008872107. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

67. Ohtake K., Nakano G., Ehara N., Sonoda K., Ito J., Uchida H., Kobayashi J. Dietary nitrite supplementation improves insulin resistance in type 2 diabetic KKA(y) mice. Nitric Oxide. 2015;44:31–38. doi: 10.1016/j.niox.2014.11.009. [PubMed] [CrossRef] [Google Scholar]

68. Khalifi S., Rahimipour A., Jeddi S., Ghanbari M., Kazerouni F., Ghasemi A. Dietary nitrate improves glucose tolerance and lipid profile in an animal model of hyperglycemia. Nitric oxide. 2015;44:24–30. doi: 10.1016/j.niox.2014.11.011. [PubMed] [CrossRef] [Google Scholar]

69. Biasucci L.M., Graziani F., Rizzello V., Liuzzo G., Guidone C., Caterina A.R.D., Brugaletta S., Mingrone G., Crea F. Paradoxical preservation of vascular function in severe obesity. Am. J. Med. 2010;123:727–734. doi: 10.1016/j.amjmed.2010.02.016. [PubMed] [CrossRef] [Google Scholar]

70. Assar M.E.I., Adana J.C.R.D., Angulo J., Martinez M.L.P., Matias A.H., Rodriguez-Manas L. Preserved endothelial function in human obesity in the absence of insulin resistance. J. Transl. Med. 2013;11:1–11. doi: 10.1186/1479-5876-11-263. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

71. Sansbury B.E., Cummins T.D., Tang Y., Hellmann J., Holden C.R., Harbeson H.M.A., Chen Y., Patel R.P., Spite M., Bhatnagar A., et al. Overexpression of endothelial nitric oxide synthase prevents diet-induced obesity and regulates adipocyte phenotype. Circ. Res. 2012;111:1176–1189. doi: 10.1161/CIRCRESAHA.112.266395. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

72. Ness A.R., Powles J.W. Fruit and vegetables, and cardiovascular disease: A review. Int. J. Epidemiol. 1997;26:1–13. doi: 10.1093/ije/26.1.1. [PubMed] [CrossRef] [Google Scholar]

73. Van’t Veer P., Jansen M.C., Klerk M., Kok F.J. Fruits and vegetables in the prevention of cancer and cardiovascular disease. Public Health Nutr. 2000;3:103–107. doi: 10.1017/S1368980000000136. [PubMed] [CrossRef] [Google Scholar]

74. Bazzano L.A., Serdula M.K., Liu S. Dietary intake of fruits and vegetables and risk of cardiovascular disease. Curr. Atheroscler. Rep. 2003;5:492–499. doi: 10.1007/s11883-003-0040-z. [PubMed] [CrossRef] [Google Scholar]

75. Sacks F.M., Svetkey L.P., Vollmer W.M., Appel L.J., Bray G.A., Harsha D., Obarzanek E., Conlin P.R., Miller E.R., 3rd, Simons-Morton D.G., et al. Effects on blood pressure of reduced dietary sodium and the Dietary Approaches to Stop Hypertension (DASH) diet. N. Engl. J. Med. 2001;344:3–10. doi: 10.1056/NEJM200101043440101. [PubMed] [CrossRef] [Google Scholar]

76. Appel L.J., Moore T.J., Obarzanek E., Vollmer W.M., Svetkey L.P., Sacks F.M., Bray G.A., Vogt T.M., Cutler J.A., Windhauser M.M., et al. A clinical trial of the effects of dietary patterns on blood pressure. N. Engl. J. Med. 1997;336:1117–1124. doi: 10.1056/NEJM199704173361601. [PubMed] [CrossRef] [Google Scholar]

77. Ashworth A., Mitchell K., Blackwell J., Vanhatalo A., Jones A.M. High-nitrate vegetable diet increases nitrate and nitrite concentrations and reduces blood pressure in healthy women. Public Health Nutr. 2015 doi: 10.1017/S1368980015000038. [PubMed] [CrossRef] [Google Scholar]

78. Gonzalez F.M., Shiva S. Nitrite anion provides potent cytoprotective and antiapoptotic effects as adjunctive therapy to reperfusion for acute myocardial infarction. Circulation. 2008;117:2986–2994. doi: 10.1161/CIRCULATIONAHA.107.748814. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

79. Duranski M.R., Greer J.J., Dejam A. Cytoprotective effects of nitrite during in vivo ischemia-reperfusion of the heart and liver. J. Clin. Investig. 2005;115:1232–1240. doi: 10.1172/JCI22493. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

80. Webb A., Bond R., McLean P., Uppal R., Benjamin N., Ahluwalia A. Reduction of nitrite to nitric oxide during ischemia protects against myocardial ischemia-reperfusion damage. Proc. Natl. Acad. Sci. USA. 2004;101:13683–13688. doi: 10.1073/pnas.0402927101. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

81. Baker J.E., Su J., Fu X., Hsu A., Gross G.J., Tweddell J.S., Hogg N. Nitrite confers protection against myocardial infarction: Role of xanthine oxidoreductase, NADPH oxidase and K(ATP) channels. J. Mol. Cell Cardiol. 2007;43:437–444. doi: 10.1016/j.yjmcc.2007.07.057. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

82. Bryan N.S., Calvert J.W., Gundewar S., Lefer D.J. Dietary nitrite restores NO homeostasis and is cardioprotective in endothelial nitric oxide synthase-deficient mice. Free Radic. Biol. Med. 2008;45:468–474. doi: 10.1016/j.freeradbiomed.2008.04.040. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

83. Johnson G., III, Tsao P.S., Mulloy D., Lefer A.M. Cardioprotective effects of acidified sodium nitrite in myocardial ischemia with reperfusion. J. Pharmacol. Exp. Ther. 1990;252:35–41. [PubMed] [Google Scholar]

84. Larsen F.J., Ekblom B., Sahlin K., Lundberg J.O., Weitzberg E. Effects of dietary nitrate on blood pressure in healthy volunteers. N. Engl. J. Med. 2006;355:2792–2793. doi: 10.1056/NEJMc062800. [PubMed] [CrossRef] [Google Scholar]

85. Kapil V., Milsom A.B., Okorie M., Maleki-Toyserkani S., Akram F., Rehman F., Arghandawi S., Pearl V., Benjamin N., Loukogeorgakis S., et al. Inorganic nitrate supplementation lowers blood pressure in humans: Role for nitrite-derived NO. Hypertension. 2010;56:274–281. doi: 10.1161/HYPERTENSIONAHA.110.153536. [PubMed] [CrossRef] [Google Scholar]

86. Webb A.J., Patel N., Loukogeorgakis S., Okorie M., Aboud Z., Misra S., Rashid R., Miall P., Deanfield J., Benjamin N., et al. Acute blood pressure lowering, vasoprotective, and antiplatelet properties of dietary nitrate via bioconversion to nitrite. Hypertension. 2008;51:784–790. doi: 10.1161/HYPERTENSIONAHA.107.103523. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

87. Vanhatalo A., Bailey S.J., Blackwell J.R., DiMenna F.J., Pavey T.G., Wilkerson D.P., Benjamin N., Winyard P.G., Jones A.M. Acute and chronic effects of dietary nitrate supplementation on blood pressure and the physiological responses to moderate-intensity and incremental exercise. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2010;68:R1121–R1131. doi: 10.1152/ajpregu.00206.2010. [PubMed] [CrossRef] [Google Scholar]

88. Hobbs D.A., George T.W., Lovegrove J.A. The effects of dietary nitrate on blood pressure and endothelial function: A review of human intervention studies. Nutr. Res. Rev. 2013;26:210–222. doi: 10.1017/S0954422413000188. [PubMed] [CrossRef] [Google Scholar]

89. Siervo M., Lala J., Ogbonmwan I., Mathers J.C. Inorganic nitrate and beetroot juice supplementation reduces blood pressure in adults: A systematic review and meta-analysis. J. Nutr. 2013;143:818–826. doi: 10.3945/jn.112.170233. [PubMed] [CrossRef] [Google Scholar]

90. Kapil V., Khambata R.S., Robertson A., Caulfield M.J., Ahluwalia A. Dietary nitrate provides sustained blood pressure lowering in hypertensive patients. Hypertension. 2015;65:320–327. doi: 10.1161/HYPERTENSIONAHA.114.04675. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

91. Sindler A.L., DeVan A.E., Fleenor B.S., Seals D.R. Inorganic nitrite supplementation for healthy arterial aging. J. Appl. Physiol. 2014;116:463–477. doi: 10.1152/japplphysiol.01100.2013. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

92. Bhushan S., Kondo K., Polhemus D.J., Otsuka H., Nicholson C.K., Tao Y.X., Huang H., Georgiopoulou V.V., Murohara T., Calvert J.W., et al. Nitrite therapy improves left ventricular function during heart failure via restoration of nitric oxide-mediated cytoprotective signaling. Circ. Res. 2014;114:1281–1291. doi: 10.1161/CIRCRESAHA.114.301475. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

93. Leist M., Single B., Castoldi A.F., Kuhnle S., Nicotera P. Intracellular adenosine triphosphate (ATP) concentration: A switch in the decision between apoptosis and necrosis. J. Exp. Med. 1997;185:1481–1486. doi: 10.1084/jem.185.8.1481. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

94. Eguchi Y., Shimizu S., Tsujimoto Y. Intracellular ATP levels determine cell death fate by apoptosis or necrosis. Cancer Res. 1997;57:1835–1840. [PubMed] [Google Scholar]

95. Murata I., Nozaki R., Ooi K., Ohtake K., Kimura S., Ueda H., Nakano G., Sonoda K., Inoue Y., Uchida H., et al. Nitrite reduces ischemia/reperfusion-induced muscle damage and improves survival rates in rat crush injury model. J. Trauma Acute Care Surg. 2012;72:1548–1554. doi: 10.1097/TA.0b013e31824a76b5. [PubMed] [CrossRef] [Google Scholar]

96. Shiva S., Wang X., Ringwood L.A., Xu X., Yuditskaya S., Annavajjhala V., Miyajima H., Hogg N., Harris Z.L., Gladwin M.T. Ceruloplasmin is a NO oxidase and nitrite synthase that determines endocrine NO homeostasis. Nat. Chem. Biol. 2006;9:486–493. doi: 10.1038/nchembio813. [PubMed] [CrossRef] [Google Scholar]

97. Bryan N.S., Rassaf T., Maloney R.E., Rodriguez C.M., Saijo F., Rodriguez J.R., Feelisch M. Cellular targets and mechanisms of nitros(yl)ation: An insight into their nature and kinetics in vivo. Proc. Natl. Acad. Sci. USA. 2004;101:4308–4313. doi: 10.1073/pnas.0306706101. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

98. Jones S.P., Greer J.J.M., Kakkar A.K., Ware P.D., Turnage R.H., Hicks M., van Haeren R., de Crom R., Kawashima S., Yokoyama M., et al. Endothelial nitric oxide synthase overexpression attenuates myocardial reperfusion injury. Am. J. Physiol. Heart Circ. Physiol. 2004;286:H276–H282. doi: 10.1152/ajpheart.00129.2003. [PubMed] [CrossRef] [Google Scholar]

99. Rassaf T., Flögel U., Drexhage C., Hendgen-Cotta U., Kelm M., Schrader J. Nitrite reductase function of deoxymyoglobin: Oxygen sensor and regulator of cardiac energetics and function. Circ. Res. 2007;100:1749–1754. doi: 10.1161/CIRCRESAHA.107.152488. [PubMed] [CrossRef] [Google Scholar]

100. Hendgen-Cotta U.B., Merx M.W., Shiva S., Schmitz J., Becher S., Klare J.P., Steinhoff H.J., Goedecke A., Schrader J., et al. Nitrite reductase activity of myoglobin regulates respiration and cellular viability in myocardial ischemia-reperfusion injury. Proc. Natl. Acad. Sci. USA. 2008;105:10256–10261. doi: 10.1073/pnas.0801336105. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

101. Shiva S., Gladwin M.T. Nitrite mediates cytoprotection after ischemia-reperfusion by modulating mitochondrial function. Basic Res. Cardiol. 2009;104:113–119. doi: 10.1007/s00395-009-0009-3. [PubMed] [CrossRef] [Google Scholar]

102. Calvert J.W., Lefer D.J. Myocardial protection by nitrite. Cardiovasc. Res. 2009;83:195–203. doi: 10.1093/cvr/cvp079. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

103. Vivekananthan D., Penn M.S., Sapp S.K., Hsu A., Topol E.J. Use of antioxidant vitamins for the prevention of cardiovascular disease: Meta-analysis of randomized trials. Lancet. 2003;361:2017–2023. doi: 10.1016/S0140-6736(03)13637-9. [PubMed] [CrossRef] [Google Scholar]

104. Bjelakovic G., Nikolova D., Gluud L.L., Simonetti R.G., Gluud C. Mortality in randomized trials of antioxidant supplements for primary and secondary prevention: Systemic review and meta-analysis. JAMA. 2007;297:842–857. doi: 10.1001/jama.297.8.842. [PubMed] [CrossRef] [Google Scholar]

105. Sesso H.D., Buring J.E., Christen W.G., Kurth T., Belanger C., MacFadyen J., Bubes V., Manson J.E., Glynn R.J., Gaziano J.M. Vitamins E and C in the prevention of cardiovascular disease in men. JAMA. 2008;300:2123–2133. doi: 10.1001/jama.2008.600. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

106. Hung H.C., Joshipura K.J., Jiang R., Hu F.B., Hunter D., Smith-Warner S.A., Colditz G.A., Rosner B., Spiegelman D., Willett W.C. Fruit and vegetable intake and risk of major chronic disease. J. Natl. Cancer Inst. 2004;96:1577–1584. doi: 10.1093/jnci/djh296. [PubMed] [CrossRef] [Google Scholar]

107. Wedzicha J.A., Seemungal T.A.R. COPD exacerbations: Defining their cause and prevention. Lancet. 2007;370:786–796. doi: 10.1016/S0140-6736(07)61382-8. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

108. Varraso R., Chiuve S.E., Fung T.T., Barr R.G., Hu F.B., Willett W.C., Camargo C.A. Alternate healthy eating index 2010 and risk of chronic obstructive pulmonary disease among US women and men: Prospective study. Brit. Med. J. 2015;350:h286. doi: 10.1136/bmj.h286. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

109. Jiang R., Paik D.C., Hankinson J.L., Barr R.G. Cured meat consumption, lung function, and chronic obstructive pulmonary disease among United States adult. Am. J. Respir. Crit. Care Med. 2007;175:798–804. doi: 10.1164/rccm.200607-969OC. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

110. De Batlle J., Mendez M., Romieu I., Balcells E., Benet M., Donaire-Gonzalez D., Ferrer J.J., Orozco-Levi M., Anto J.M., Garcia-Aymerich J. Cured meat consumption increases risk of readmission in COPD patients. Eur. Respir. J. 2012;40:555–560. doi: 10.1183/09031936.00116911. [PubMed] [CrossRef] [Google Scholar]

111. Varraso R., Jiang R., Barr R.G., Willett W.C., Carlos A. Prospective study of cured meats consumption and risk of chronic obstructive pulmonary disease in men. Am. J. Epidemiol. 2007;166:1438–1445. doi: 10.1093/aje/kwm235. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

112. Shuval H.I., Gruener N. Epidemiological and toxicological aspects of nitrates and nitrites in the environment. Am. J. Public Health. 1972;62:1045–1052. doi: 10.2105/AJPH.62.8.1045. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

113. Hsu J., Arcot J., Lee N.A. Nitrate and nitrite quantification from cured meat and vegetables and their estimated dietary intake in Australians. Food Chem. 2009;115:334–339. doi: 10.1016/j.foodchem.2008.11.081. [CrossRef] [Google Scholar]

114. Archer D.L. Evidence that ingested nitrate and nitrite are beneficial to health. J. Food Prot. 2002;65:872–875. [PubMed] [Google Scholar]

115. Cassens R.G. Residual nitrite in cured meat. Food Technol. 1997;51:53–55. [Google Scholar]

116. Romieu I., Trenga C. Diet and obstructive lung diseases. Epidemiol. Rev. 2001;23:268–287. doi: 10.1093/oxfordjournals.epirev.a000806. [PubMed] [CrossRef] [Google Scholar]

117. Romieu I. Nutrition and lung health. Int. J. Tuberc. Lung Dis. 2005;9:362–374. [PubMed] [Google Scholar]

118. Denny S.I., Thompson R.L., Margetts B.M. Dietary factors in the pathogenesis of asthma and chronic obstructive pulmonary disease. Curr. Allergy Asthma Rep. 2003;3:130–136. doi: 10.1007/s11882-003-0025-6. [PubMed] [CrossRef] [Google Scholar]

119. McKeever T.M., Scrivener S., Broadfield E., Jones Z., Britton J., Lewis S.A. Prospective study of diet and decline in lung function in a general population. Am. J. Respir. Crit. Care Med. 2002;165:1299–1303. doi: 10.1164/rccm.2109030. [PubMed] [CrossRef] [Google Scholar]

120. Butland B.K., Fehily A.M., Elwood P.C. Diet, lung function, and lung function decline in a cohort of 2512 middle aged men. Thorax. 2000;55:102–108. doi: 10.1136/thorax.55.2.102. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

121. Smit H.A., Grievink L., Tabak C. Dietary influences on chronic obstructive lung disease and asthma: A review of the epidemiological evidence. Proc. Nutr. Soc. 1999;58:309–319. doi: 10.1017/S0029665199000427. [PubMed] [CrossRef] [Google Scholar]

122. Carey I.M., Strachan D.P., Cook D.G. Effects of changes in fresh fruit consumption on ventilator function in healthy British adults. Am. J. Respir. Crit. Care Med. 1998;158:728–733. doi: 10.1164/ajrccm.158.3.9712065. [PubMed] [CrossRef] [Google Scholar]

123. Weitzberg E., Lundberg J.O. Novel aspects of dietary nitrate and human health. Annu. Rev. Nutr. 2013;33:129–159. doi: 10.1146/annurev-nutr-071812-161159. [PubMed] [CrossRef] [Google Scholar]

124. Bartsch H., Ohshima H., Pignatelli B. Inhibitors of endogenous nitrosation. Mechanisms and implications in human cancer prevention. Mutat. Res. 1988;202:307–324. doi: 10.1016/0027-5107(88)90194-7. [PubMed] [CrossRef] [Google Scholar]

125. Pannala A.S., Mani A.R., Spencer J.P.E., Skinner V., Bruckdorfer K.R., Moore K.P., Rice-Evans C.A. The effect of dietary nitrate on salivery, plasma, and urinary nitrate metabolism in humans. Free Radic. Biol. Med. 2003;34:576–584. doi: 10.1016/S0891-5849(02)01353-9. [PubMed] [CrossRef] [Google Scholar]

126. Larsen F.J., Schiffer T.A., Ekblom B., Mattsson M.P., Checa A., Wheelock C.E., Nystrom T., Lundberg J.O., Weitzberg E. Dietary nitrate reduces resting metabolic rate: A randomized, crossover study in humans. Am. J. Clin. Nutr. 2014;99:843–850. doi: 10.3945/ajcn.113.079491. [PubMed] [CrossRef] [Google Scholar]

127. Ricciardolo F.L.M., Sterk P.J., Gaston B., Folkerts G. Nitric oxide in health and disease of the respiratory system. Physiol. Rev. 2004;84:731–765. doi: 10.1152/physrev.00034.2003. [PubMed] [CrossRef] [Google Scholar]

128. Hansel T.T., Kharitonov S.A., Donnelly L.E., Erin E.M., Currie M.G., Moore W.M., Manning P.T., Recker D.P., Barnes P.J. A selective inhibitor of inducible nitric oxide synthase inhibits exhaled breath nitric oxide in healthy volunteers and asthmatics. FASEB J. 2003;17:1298–1300. doi: 10.1096/fj.02-0633fje. [PubMed] [CrossRef] [Google Scholar]

129. Brindicci C., Ito K., Resta O., Pride N.B., Barnes P.J., Kharitonov S.A. Exhaled nitric oxide from lung periphery is increased in COPD. Eur. Respir. J. 2005;26:52–59. doi: 10.1183/09031936.04.00125304. [PubMed] [CrossRef] [Google Scholar]

130. Berry M.J., Justus N.W., Hauser J.I., Case A.H., Helms C.C., Basu S., Rogers Z., Lewis M.T., Miller G.D. Dietary nitrate supplementation improves exercise performance and decreases blood pressure in COPD patients. Nitric Oxide. 2014 doi: 10.1016/j.niox.2014.10.007. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

131. Kerley C.P., Cahill K., Bolger K., McGowan A., Burke C., Faul J., Cormican L. Dietary nitrate supplementation in COPD: An acute, double-blind, randomized, placebo-controlled, crossover trial. Nitric Oxide. 2015;44:105–111. doi: 10.1016/j.niox.2014.12.010. [PubMed] [CrossRef] [Google Scholar]

132. Iijima K., Grant J., McElroy K., Fyfe V., Preston T., McColl K.E. Novel mechanism of nitrosative stress from dietary nitrate with relevance to gastro-oesophageal junction cancers. Cartinogenesis. 2003;24:1951–1960. doi: 10.1093/carcin/bgg168. [PubMed] [CrossRef] [Google Scholar]

133. Magee P.N., Barnes J.M. The production of malignant primary hepatic tumours in the rat by feeding dimethylnitrosamine. Br. J. Cancer. 1956;10:114–122. doi: 10.1038/bjc.1956.15. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

134. Mirvish S.S. N-nitroso compounds: Their chemical and in vivo formation and possible importance as environmental carcinogenesis. J. Toxicol. Environ. Health. 1977;2:1267–1277. doi: 10.1080/15287397709529529. [PubMed] [CrossRef] [Google Scholar]

135. Mirvish S.S. Role of N-nitroso compounds (NOC) and N-nitrosation in etiology of gastric, esophageal, nasopharyngeal and bladder cancer and contribution to cancer of known exposures to NOC. Cancer Lett. 1995;93:17–48. doi: 10.1016/0304-3835(95)03786-V. [PubMed] [CrossRef] [Google Scholar]

136. Bryan N.S., Alexander D.D., Coughlin J.R., Milkowski A.L., Boffetta P. Ingested nitrate and nitrite and stomach cancer risk: An updated review. Food Chem. Toxicol. 2012;50:3646–3665. doi: 10.1016/j.fct.2012.07.062. [PubMed] [CrossRef] [Google Scholar]

137. Buiatti E., Palli D., Decarli A., Amadori D., Avellini C., Bianchi S., Biserni R., Cipriani F., Cocco P., Giacosa A., et al. A case-control study of gastric cancer and diet in Italy. Int. J. Cancer. 1989;44:611–616. doi: 10.1002/ijc.2910440409. [PubMed] [CrossRef] [Google Scholar]

138. Ward M.H., López-Carrillo L. Dietary factors and the risk of gastric cancer in Mexico city. Am. J. Epidemiol. 1999;149:925–932. doi: 10.1093/oxfordjournals.aje.a009736. [PubMed] [CrossRef] [Google Scholar]

139. Van den Brandt P.A., Botterweck A.A.M., Goldbohm A. Salt intake, cured meat consumption, refrigerator use and stomach cancer incidence: A prospective cohort study (Netherlands) Cancer Cause Control. 2003;14:427–438. doi: 10.1023/A:1024979314124. [PubMed] [CrossRef] [Google Scholar]

140. Kuhnle G.G.C., Story G.W., Reda T., Mani A.R., Moore K.P., Lunn J.C., Bingham S.A. Diet-induced endogenous formation of nitroso compounds in the GI tract. Free Radic. Biol. Med. 2007;43:1040–1047. doi: 10.1016/j.freeradbiomed.2007.03.011. [PubMed] [CrossRef] [Google Scholar]

141. Hogg N. Red meat and colon cancer: Heme proteins and nitrite in the gut. A commentary on “Diet-induced endogenous formation of nitroso compounds in the GI tract” Free Radic. Biol. Med. 2007;43:1037–1039. doi: 10.1016/j.freeradbiomed.2007.07.006. [PubMed] [CrossRef] [Google Scholar]

142. McEvoy C.T., Temple N., Woodside J.V. Vegetarian diets, low-meat diets and health: A review. Public Health Nutr. 2012;15:2287–2294. doi: 10.1017/S1368980012000936. [PubMed] [CrossRef] [Google Scholar]

143. Gilchrist M., Winyard P.G., Benjamin N. Dietary nitrate-good or bad? Nitric Oxide. 2010;22:104–109. doi: 10.1016/j.niox.2009.10.005. [PubMed] [CrossRef] [Google Scholar]

144. Milkowski A., Garg H.K., Coughlin J.R., Bryan N.S. Nutritional epidemiology in the context of nitric oxide biology: A risk-benefit evaluation for dietary nitrite and nitrate. Nitric Oxide. 2010;15:110–119. doi: 10.1016/j.niox.2009.08.004. [PubMed] [CrossRef] [Google Scholar]

145. Bradbury K.E., Appleby P.N., Key T.J. Fruit, vegetable, and fiber intake in relation to cancer risk: Findings from the European Prospective Investigation into Cancer and Nutrition (EPIC) Am. J. Clin. Nutr. 2014;100:394S–398S. doi: 10.3945/ajcn.113.071357. [PubMed] [CrossRef] [Google Scholar]

146. Lim J.W., Kim H., Kim KH. NF-κB, inducible nitric oxide synthase and apoptosis by Helicobacter pylori infection. Free Radic. Biol. Med. 2001;31:355–366. doi: 10.1016/S0891-5849(01)00592-5. [PubMed] [CrossRef] [Google Scholar]

147. Wilson K.T., Ramanujam K.S., Mobley H.L., Musselman R.F., James S.P., Meltzer S.J. Helicobacter pylori stimulates inducible nitric oxide synthase expression and activity in a murine macrophage cell line. Gastroenterology. 1996;111:1524–1533. doi: 10.1016/S0016-5085(96)70014-8. [PubMed] [CrossRef] [Google Scholar]

148. Jaiswal M., LaRusso N.F., Gores G.J. Nitric oxide in gastrointestinal epithelial cell cartinogenesis: Linking inflammation to oncogenesis. Am. J. Physiol. Gastrointest. Liver physiol. 2001;281:G626–G634. [PubMed] [Google Scholar]

149. Zhao K., Whiteman M., Spencer J.P., Halliwell B. DNA damage by nitrite and peroxynitrite: Protection by dietary phenols. Methods Enzymol. 2001;335:296–307. [PubMed] [Google Scholar]

150. Wink D.A., Vodovotz Y., Laval J., Laval F., Dewhirst M.W., Mitchell J.B. The multifaceted roles of nitric oxide in cancer. Carcinogenesis. 1998;19:711–721. doi: 10.1093/carcin/19.5.711. [PubMed] [CrossRef] [Google Scholar]

151. Lancaster J.R., Xie K. Tumors face NO problems? Cancer Res. 2006;66:6459–6462. doi: 10.1158/0008-5472.CAN-05-2900. [PubMed] [CrossRef] [Google Scholar]

152. Brot C., Jorgensen N.R., Sorensen O.H. The influence of smoking on vitamin D status and calcium metabolism. Eur. J. Clin. Nutr. 1999;53:920–926. doi: 10.1038/sj.ejcn.1600870. [PubMed] [CrossRef] [Google Scholar]

153. Maurel D.B., Boisseau N., Benhamou C.L., Jaffre C. Alcohol and bone: Review of dose effects and mechanisms. Osteoporos. Int. 2012;23:1–16. doi: 10.1007/s00198-011-1787-7. [PubMed] [CrossRef] [Google Scholar]

154. Holbrook T.L., Barrett-Connor E., Wingard D.L. Dietary calcium and risk of hip fracture: 14-year prospective population study. Lancet. 1988;332:1046–1049. doi: 10.1016/S0140-6736(88)90065-7. [PubMed] [CrossRef] [Google Scholar]

155. Feskanich D., Willett W.C., Colditz G.A. Calcium, vitamin D, milk consumption, and hip fractures: A prospective study among postmenopausal women. Am. J. Clin. Nutr. 2003;77:504–511. [PubMed] [Google Scholar]

156. Muraki S., Yamamoto S., Ishibashi H., Oka H., Yoshimura N., Kawaguchi H., Nakamura K. Diet and lifestyle associated with increased bone mineral density: Cross-sectional study of Japanese elderly women at an osteoporosis outpatient clinic. J. Orthop. Sci. 2007;12:317–320. doi: 10.1007/s00776-007-1143-0. [PubMed] [CrossRef] [Google Scholar]

157. Van’t Hof R.J., Ralston S.H. Nitric oxide and bone. Immunology. 2001;103:255–261. doi: 10.1046/j.1365-2567.2001.01261.x. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

158. Armour K.E., van’t Hof R.J., Grabowski P.S., Reid D.M., Ralston S.H. Evidence for pathogenic role of nitric oxide in inflammation-induced osteoporosis. J. Bone Miner. Res. 1999;14:2137–2142. doi: 10.1359/jbmr.1999.14.12.2137. [PubMed] [CrossRef] [Google Scholar]

159. Liu S., Yan H., Hou W., Wu P., Tian J., Tian L., Zhu B., Ma J., Lu S. Relationships between endothelial nitric oxide synthase gene polymorphisms and osteoporosis in postmenopausal women. J. Zhejiang. Univ. Sci. B. 2009;10:609–618. doi: 10.1631/jzus.B0920137. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

160. Wimalawansa S.J. Nitric oxide: Novel therapy for osteoporosis. Expert Opin. Pharmacother. 2008;9:1–20. doi: 10.1517/14656560802197162. [PubMed] [CrossRef] [Google Scholar]

161. Wimalawansa S.J., de Marco G., Gangula P., Yallampalli C. Nitric oxide donor alleviates ovariectomy-induced bone loss. Bone. 1996;18:301–304. doi: 10.1016/8756-3282(96)00005-1. [PubMed] [CrossRef] [Google Scholar]

162. Hao Y.J., Tang Y., Chen F.B., Pei F.X. Different doses of nitric oxide donor prevent osteoporosis in ovariectomized rats. Clin. Orthop. Relat. Res. 2005;435:226–231. doi: 10.1097/01.blo.0000153990.74837.73. [PubMed] [CrossRef] [Google Scholar]

163. Jamal S.A., Reid L.S., Hamilton C.J. The effects of organic nitrates on osteoporosis: A systematic review. Osteoporos. Int. 2013;24:763–770. doi: 10.1007/s00198-012-2262-9. [PubMed] [CrossRef] [Google Scholar]

164. Prynne C.J., Mishra G.D., O’Connell M.A., Muniz G., Laskey M.A., Yan L., Prentice A., Ginty F. Fruit and vegetable intakes and bone mineral status: A cross sectional study in 5 age and sex cohorts. Am. J. Clin. Nutr. 2006;83:1420–1428. [PubMed] [Google Scholar]

165. Tucker K.L., Hannan M.T., Chen H., Cupples L.A., Wilson P.W., Kiel D.P. Potassium, magnesium, and fruit and vegetable intakes are associated with greater bone mineral density in elderly men and women. Am. J. Clin. Nutr. 1999;69:727–736. [PubMed] [Google Scholar]

166. Macdonald H.M., New S.A., Golden M.H., Campbell M.K., Reid D.M. Nutritional associations with bone loss during the menopausal transition: Evidence of a beneficial effect of calcium, alcohol, and fruit and vegetable nutrients and of a detrimental effect of fatty acids. Am. J. Clin. 2004;79:155–165. [PubMed] [Google Scholar]