What are the two different hypotheses for how lizard species with different body types evolved on each island in the Caribbean?

1. Espmark Y, Amundsen T, Rosenqvist G. Trondheim: Tapir Forlag; 2000. Animal signals: signaling and signal design in animal communication. p. 496 p. [Google Scholar]

2. erhardt HC, Huber F. Chicago: University of Chicago Press; 2002. Acoustic communication in insects and anurans. p. 542 p. [Google Scholar]

3. Greenfield MD. New York: Oxford University Press; 2002. Signalers and receivers: mechanisms and evolution of arthropod communication. p. 432 p. [Google Scholar]

4. Jenssen TA. Evolution of Anoline lizard display behavior. Am Zool. 1977;17:203–215. [Google Scholar]

5. Ord TJ, Blumstein DT. Size constraints and the evolution of display complexity: why do large lizards have simple displays? Biol J Linn Soc. 2002;76:145–161. [Google Scholar]

6. Ord TJ, Blumstein DT, Evans CS. Ecology and signal evolution in lizards. Biol J Linn Soc. 2002;77:127–148. [Google Scholar]

7. Dawkins MS. Are there general principles of signal design? Phil Trans Roy Soc Lond B. 1993;340:251–255. [PubMed] [Google Scholar]

8. Endler JA. Some general comments on the evolution and design of animal communication systems. Phil Trans Roy Soc Lond B. 1993;340:215–225. [PubMed] [Google Scholar]

9. Martins EP, Labra A, Hallloy M, Thompson JR. Large-scale patterns of signal evolution: an interspecific study of Liolaemus lizard headbob displays. An Behav. 2004;68:453–463. [Google Scholar]

10. Bels VL. The mechanism of dewlap extension in Anolis carolinensis (Reptilia: Iguanidae) with histological analysis of the hyoid apparatus. J Morph. 1990;206:225–244. [PubMed] [Google Scholar]

11. Font E, Rome LC. Functional morphology of dewlap extension in the lizard Anolis equestris (Iguanidae). J Morph. 1990;206:245–258. [PubMed] [Google Scholar]

12. Schwartz A, Henderson RW. Gainesville: University of Florida Press; 1991. Amphibians and reptiles of the West Indies: descriptions, distributions, and natural history. p. 736 p. [Google Scholar]

13. Williams EE, Rand AS. Species recognition, dewlap function and faunal size. Am Zool. 1977;17:261–270. [Google Scholar]

14. Leal M, Rodríguez-Robles JA. Anti-predator responses of the Puerto Rican giant anole, Anolis cuvieri (Sauria: Polychrotidae). Biotrop. 1997;29:372–375. [Google Scholar]

15. Fitch HS, Hillis DM. The Anolis dewlap: interspecific variability and morphological associations with habitat. Copeia. 1984;1984:315–323. [Google Scholar]

16. Losos JB, Chu L. Examination of factors potentially affecting dewlap size in Caribbean anoles. Copeia. 1998;1998:430–438. [Google Scholar]

17. Rand AS, Williams EE. An estimation of redundancy and information content of anole dewlaps. Am Nat. 1970;104:99–103. [Google Scholar]

18. Harmon LJ, Kolbe JJ, Cheverud JM, Losos JB. Convergence and the multidimensional niche. Evol. 2005;59:409–421. [PubMed] [Google Scholar]

19. Losos JB, Jackman TR, Larson A, de Queiroz K, Rodriguez-Schettino L. Contingency and determinism in replicated adaptive radiations of island lizards. Science. 1998;279:2115–2118. [PubMed] [Google Scholar]

20. Nicholson KE, Glor RE, Kolbe JJ, Larson A, Hedges SB, et al. Mainland colonization by island lizards. J Biogeo. 2005;32:929–938. [Google Scholar]

21. Beuttell K, Losos JB. Ecological morphology of Caribbean anoles. Herp Mono. 1999;13:1–28. [Google Scholar]

22. Butler MA, Schoener TW, Losos JB. The relationship between sexual size dimorphism and habitat use in Greater Antillean Anolis lizards. Evol. 2000;54:259–272. [PubMed] [Google Scholar]

23. Butler MA, Losos JB. Multivariate sexual dimorphism, sexual selection, and adaptation in Greater Antillean Anolis lizards. Ecol Mono. 2002;72:541–559. [Google Scholar]

24. Fleishman LJ. The influence of the sensory system and the environment on motion patterns in the visual displays of Anoline lizards and other vertebrates. Am Nat (suppl.) 1992;139:S36–S61. [Google Scholar]

25. Fleishman LJ. Signal function, signal efficiency, and the evolution of Anoline lizard dewlap color. In: Espmark Y, Amundsen T, Rosenqvist G, editors. Animal Signals: Signaling and Signal Design in Animal Communication. Trondheim: Tapir Academic Press; 2000. pp. pp. 209–236. [Google Scholar]

26. Fleishman LJ, Persons J. The influence of stimulus and background colour on signal visibility in the lizard Anolis cristatellus. J Exp Biol. 2001;204:1559–1575. [PubMed] [Google Scholar]

27. Leal M, Fleishman LJ. Evidence for habitat partitioning based on adaptation to environmental light in a pair of sympatric lizard species. Proc R Soc Lond B. 2002;269:351–359. [PMC free article] [PubMed] [Google Scholar]

28. Leal M, Fleishman LJ. Differences in visual signal design and detectability between allopatric populations of Anolis lizards. Am Nat. 2004;163:26–39. [PubMed] [Google Scholar]

29. Losos JB. An experimental demonstration of the species-recognition role of Anolis dewlap color. Copeia. 1985;1985:905–910. [Google Scholar]

30. Persons MH, Fleishman LJ, Frye MA, Stimphil ME. Sensory response patterns and the evolution of visual signal design in Anoline lizards. J Comp Physiol A. 1999;184:585–607. [Google Scholar]

31. Jackman TR, Larson A, de Queiroz K, Losos JB. Phylogenetic relationships and tempo of early diversification in Anolis lizards. Syst Biol. 1999;48:254–285. [Google Scholar]

32. Nicholson KE. Phylogenetic analysis and a test of the current infrageneric classification of Norops (beta Anolis). Herp Mono. 2002;16:93–120. [Google Scholar]

33. Poe S. Phylogeny of anoles. Herp Mono. 2004;18:37–89. [Google Scholar]

34. Ashton RE, Ashton PS. Miami: Windward Publishing, Inc; 1991. Handbook of Reptiles and Amphibians of Florida: Part Two: Lizards, Turtles, and Crocodilians. p. 192 p. [Google Scholar]

35. Powell R, Henderson RW. Contributions to West Indian Herpetology: A tribute to Albert Schwartz. Ithaca: Society for the Study of Amphibians and Reptiles; 1996. p. 457 p. [Google Scholar]

36. Rivero JA. The Amphibians and Reptiles of Puerto Rico. San Juan: Editorial Universitaria, Universidad de Puerto Rico; 1978. p. 152 p. [Google Scholar]

37. Rodriguez-Schettino LR. The iguanid lizards of Cuba. Gainesville: University Press of Florida; 1999. p. 428 p. [Google Scholar]

38. Smithe FB. Naturalist's color guide. New York: American Museum of Natural History; 1981. [Google Scholar]

39. Sanderson MJ. r8s: inferring absolute rates of molecular evolution and divergence times in the absence of a molecular clock. Bioinformatics. 2003;19:301–302. [PubMed] [Google Scholar]

40. Rambaut A, Charleston M. TreeEdit v. 1.08. Oxford University; 2001. [Google Scholar]

41. Böhning-Gaese KM, Schuda D, Helbig AJ. Weak phylogenetic effects on ecological niches of Sylvia warblers. J Evol Biol. 2003;16:956–965. [PubMed] [Google Scholar]

42. Casgrain P. Montreal, Canada: University of Montreal; 2001. Permute! Vers. 3.4 alpha. [Google Scholar]

43. Williams EE. Origin of faunas: evolution of lizard congeners in a complex island fauna: a trial analysis. Evol Biol. 1972;6:47–89. [Google Scholar]

44. Smouse PE, Long JC, Sokal RR. Multiple regression and correlation extensions of the Mantel test of matrix correspondence. Syst Zool. 1986;35:627–632. [Google Scholar]

45. Kolbe JJ, Glor RE, Rodriguez-Schettino L, Lara AC, Larson A, et al. Genetic variation increases during biological invasion of a Cuban lizard. Nature. 2004;431:177–181. [PubMed] [Google Scholar]

46. Fleishman LJ, Loew ER, Leal M. Ultraviolet vision in lizards. Nature. 1993;365:397. [Google Scholar]

47. Cooper WE, Greenberg N. Reptilian coloration and behavior. In: Gans C, Crews D, editors. Biology of the Reptilia: Hormones, Brain, and Behavior Series. Chicago: University of Chicago Press; 1992. p. pp. 578. [Google Scholar]

48. Losos JB. Adaptation and speciation in Greater Antillean anoles. In: Dieckmann U, Doebeli M, Metz JAJ, Tautz D, editors. Adaptive Speciation. Cambridge: Cambridge University Press; 2004. pp. pp. 335–343. [Google Scholar]

49. Williams EE. Ecomorphs, faunas, island size, and diverse endpoints in island radiations of Anolis. In: Huey RB, Pianka ER, Schoener TW, editors. Lizard Ecology: studies of a model organism. Cambridge: Harvard University Press; 1983. pp. pp. 326–370. [Google Scholar]

50. Macedonia JM, Stamps JA. Species recognition in the lizard, Anolis grahami (Reptilia, Iguanidae): Evidence from video playbacks of conspecific and heterospecific displays. Ethol. 1994;98:246–264. [Google Scholar]

51. Macedonia JM, Evans CS, Losos JB. Male Anolis lizards discriminate video-recorded conspecific and heterospecific displays. An Behav. 1994;47:1220–1223. [Google Scholar]

52. Moermond TC. Habitat constraints on the behavior, morphology, and community structure of Anolis lizards. Ecol. 1979;60:152–164. [Google Scholar]

53. Echelle AA, Echelle AF, Fitch HS. A comparative analysis of aggressive display in nine species of Costa Rican Anolis. Herp. 1971;27:271–288. [Google Scholar]

54. Fitch HS, Henderson RW. Ecological and ethological parameters in Anolis bahorucoensis, a species having rudimentary development of the dewlap. Amph-Rept. 1987;8:69–80. [Google Scholar]

55. Rodrigues MT, Xavier V, Skuk G, Pavan D. New specimens of Anolis phyllorhinus (Squamata, Polychrotidae): the first female of the species and of proboscid anoles. Pap Avul Zool, São Paulo. 2002;42:363–380. [Google Scholar]

56. Tokarz RR. An experimental test of the importance of the dewlap in male mating success in the lizard Anolis sagrei. Herp. 2002;58:87–94. [Google Scholar]

57. Tokarz RR, Paterson AV, McMann S. Laboratory and field test of the functional significance of the male's dewlap in the lizard Anolis sagrei. Copeia. 2003;2003:502–511. [Google Scholar]

58. Tokarz RR, Paterson AV, McMann S. Importance of dewlap display in male mating success in free-ranging brown anoles (Anolis sagrei). J Herp. 2005;39:174–177. [Google Scholar]


Page 2

List of species included in this study and source of dewlap information (authors indicated by initials, * = Richard E. Glor).

SpeciesCitationPers. Obs.SpeciesCitationPers. Obs.
C. barbatus S&H 1991JBLA. homolechisS&H 1991; LRS 1999JBL
C. chamaeleonides S&H 1991JBLA. imiasS&H 1991; LRS 1999
C. porcus S&H 1991JBLA. inexpectatusS&H 1991; LRS 1999
“C'norops” barbouri S&H 1991; P&H 1996JBLA. insolitusS&H 1991JBL
A. acutus S&H 1991KENA. isolepisS&H 1991; LRS 1999JBL
A. aeneus S&H 1991A. juangundlachiS&H 1991; LRS 1999JBL
A. ahli S&H 1991; LRS 1999A. jubarS&H 1991; LRS 1999JBL
A. alayoni LRS 1999A. koopmaniS&H 1991
A. alfaroi LRS 1999A. krugiS&H 1991; Rivero 1978JBL, *
A. aliniger S&H 1991JBLA. lineatopusS&H 1991JBL
A. allisoni S&H 1991; LRS 1999JBLA. lividusS&H 1991
A. allogus S&H 1991; LRS 1999JBLA. longicepsS&H 1991
A. altavelensis S&H 1991A. longitibialisS&H 1991JBL, *
A. alumina S&H 1991JBLA. loysianaS&H 1991; LRS 1999JBL
A. alutaceus S&H 1991; LRS 1999JBLA. luciaeS&H 1991
A. anfilioquioi S&H 1991; LRS 1999A. luciusS&H 1991; LRS 1999
A. angusticeps S&H 1991; LRS 1999JBLA. luteogularisS&H 1991; LRS 1999JBL
A. argenteolis S&H 1991; LRS 1999JBLA. macilentusLRS 1999
A. argillaceus S&H 1991; LRS 1999A. marcanoiS&H 1991JBL
A. armouri S&H 1991A. marmoratusS&H 1991
A. bahorucoensis S&H 1991JBLA. marronS&H 1991
A. baleatus S&H 1991JBLA. maynardiS&H 1991
A. baracoe S&H 1991; LRS 1999A. mestreiS&H 1991; LRS 1999JBL
A. barahonae S&H 1991; P&H 1996JBLA. monensisS&H 1991; Rivero 1978
A. bartschi S&H 1991; LRS 1999JBLA. monticolaS&H 1991
A. bimaculatus S&H 1991A. nobleiS&H 1991; LRS 1999
A. bremeri S&H 1991; LRS 1999A. nubilisS&H 1991
A. brevirostris S&H 1991JBL, *A. occultusS&H 1991; Rivero 1978JBL
A. brunneus S&H 1991A. oculatusS&H 1991
A. carolinensis Ashton and Ashton 1991LJH, JBL, KEN, *A. olssoniS&H 1991JBL
A. caudalis S&H 1991A. opalinusS&H 1991JBL
A. centralis S&H 1991; LRS 1999JBLA. ophiolepisS&H 1991; LRS 1999
A. chlorocyanus S&H 1991JBL, KENA. paternusS&H 1991; LRS 1999
A. christophei S&H 1991JBL, *A. pigmaequestrisS&H 1991; LRS 1999
A. clivicola S&H 1991; LRS 1999*A. pinchotiS&H 1991
A. coelestinus S&H 1991JBL, *A. placidusS&H 1991JBL
A. concolor S&H 1991A. poncensisS&H 1991; Rivero 1978JBL
A. confusus LRS 1999A. porcatusS&H 1991; LRS 1999KEN
A. conspersus S&H 1991; P&H 1996A. pulchellusS&H 1991; Rivero 1978JBL, *
A. cooki S&H 1991; Rivero 1978JBLA. pumilisS&H 1991; LRS 1999
A. cristatellus S&H 1991; Rivero 1978JBL, KENA. quadriocelliferS&H 1991; LRS 1999
A. cupeyalensis S&H 1991; LRS 1999A. reconditusS&H 1991
A. cuvieri S&H 1991; Rivero 1978JBLA. richardiS&H 1991
A. cyanopleurus S&H 1991; LRS 1999A. ricordiiS&H 1991JBL
A. cybotes S&H 1991JBL, KENA. rimarumS&H 1991
A. darlingtoni S&H 1991A. rooseveltiS&H 1991; Rivero 1978
A. delafuentei S&H 1991; LRS 1999A. roquetS&H 1991
A. desachensis S&H 1991A. rubribarbusS&H 1991; LRS 1999
A. distichus S&H 1991JBL, KEN, *A. rupinaeS&H 1991
A. dolichocephalus S&H 1991A. sabanusS&H 1991
A. equestris S&H 1991; LRS 1999KENA. sagreiS&H 1991; LRS 1999LJH, JBL, KEN, *
A. ernestwilliamsi S&H 1991A. scriptusS&H 1991
A. etheridgei S&H 1991JBLA. semilineatusS&H 1991JBL
A. eugenegrahami S&H 1991A. sheplaniS&H 1991JBL
A. evermanni S&H 1991; Rivero 1978JBLA. shreveiS&H 1991JBL
A. extremus S&H 1991A. singularisS&H 1991JBL
A. fairchildi S&H 1991A. smallwoodiS&H 1991; LRS 1999
A. ferreus S&H 1991A. smaragdinusS&H 1991
A. fowleri S&H 1991JBLA. spectrumS&H 1991; LRS 1999
A. fugitivus S&H 1991; LRS 1999A. strahmiS&H 1991JBL
A. garmani S&H 1991JBL, KENA. stratulusS&H 1991; Rivero 1978JBL
A. garridoi LRS 1999A. stratulusS&H 1991; Rivero 1978
A. gingivinus S&H 1991A. trinitatusS&H 1991
A. grahami S&H 1991JBLA. valencienniS&H 1991JBL
A. griseus S&H 1991A. vandicusS&H 1991; LRS 1999
A. guafe LRS 1999A. vermiculatusS&H 1991; LRS 1999JBL
A. guazuma S&H 1991; LRS 1999A. vescusLRS 1999
A. gundlachi S&H 1991; Rivero 1978A. wattsiS&H 1991
A. haetianus S&H 1991A. websteriS&H 1991
A. hendersoni S&H 1991A. whitemaniS&H 1991JBL