What are the steps of a hormone signaling pathway?

1. Challis J. Mechanism of parturition and preterm labor. Obstet Gynecol Surv. 2000;55:650–660. [PubMed] [Google Scholar]

2. Sanborn BM. Hormones and calcium: mechanisms controlling uterine smooth muscle contractile activity. The Litchfield Lecture Exp Physiol. 2001;86:223–237. [PubMed] [Google Scholar]

3. Lopez-Bernal A. Mechanisms of labour - biochemical aspects. BJOG. 2003;110:39–45. [PubMed] [Google Scholar]

4. Myatt L, Lye S. Expression, localization and function of prostaglandin receptors in myometrium. Prostaglandins Leukot Essent Fatty Acids. 2004;70:137–148. [PubMed] [Google Scholar]

5. Sanborn BM, Ku CY, Shlykov SG, Babich LG. Molecular signaling through G protein coupled receptors and the control of intracellular calcium in myometrium. J Soc Gynecol Investig. 2005;12:479–487. [PubMed] [Google Scholar]

6. Putney JW., Jr Physiological mechanisms of TRPC activation. Pflugers Arch. 2005;451:29–34. [PubMed] [Google Scholar]

7. Minke B. TRP channels and Ca2+ signalling. Cell Calcium. 2006;40:261–275. [PMC free article] [PubMed] [Google Scholar]

8. Monga M, Campbell DF, Sanborn BM. Oxytocin-stimulated capacitative calcium entry in human myometrial cells. Am J Obstet Gynecol. 1999;181:424–429. [PubMed] [Google Scholar]

9. Yang M, Gupta A, Shlykov SG, Corrigan R, Tsujimoto S, Sanborn BM. Multiple Trp isoforms implicated in capacitative calcium entry are expressed in human pregnant myometrium and myometrial cells. Biol Reprod. 2002;67:988–994. [PubMed] [Google Scholar]

10. Shlykov SG, Yang M, Alcorn JL, Sanborn BM. Capacitative cation entry in human myometrial cells and augmentation by hTrpC3 overexpression. Biol Reprod. 2003;69:647–655. [PubMed] [Google Scholar]

11. Thompson M, Barata da Silva H, Zielinska W, White T, Bailey J, Lund F, et al. Role of CD38 in myometrial Ca2+ transients: modulation by progesterone. Am J Physiol Endocrinol Metab. 2004;287:E1142–E1148. [PubMed] [Google Scholar]

12. Dogan S, Deshpande D, White T, Walseth T, Kannan M. Regulation of CD 38 expression and function by steroid hormones in myometrium. Mol Cell Endocrinol. 2006;246:101–106. [PubMed] [Google Scholar]

13. Zhong M, Yang M, Sanborn BM. Extracellular signal-regulated kinase 1/2 activation by myometrial oxytocin receptor involves Gα(q)Gβγ and epidermal growth factor receptor tyrosine kinase activation. Endocrinology. 2003;144:2947–2956. [PubMed] [Google Scholar]

14. Hoare S, Copland JA, Strakova Z, Ives K, Jeng Y-J, Hellmich MR, et al. The proximal portion of the COOH terminus of the oxytocin receptor is required for coupling to Gq, but not Gi. Independent mechanisms for elevating intracellular calcium concentrations from intracellular stores. J Biol Chem. 1999;274:28682–28689. [PubMed] [Google Scholar]

15. Zhou X, Lutz S, Steffens F, Korth M, Wieland T. Oxytocin receptors differentially signal via Gq and Gi proteins in pregnant and nonpregnant rat uterine myocytes: implications for myometrial contractility. Mol Endocrinol. 2007;21:740–752. [PubMed] [Google Scholar]

16. Rimoldi V, Reversi A, Taverna E, Rosa P, Francolini M, Cassoni P, et al. Oxytocin receptor elicits different EGFR/MAPK activation patterns depending on its localization in caveolin-1 enriched domains. Oncogene. 2003;22:6054–6060. [PubMed] [Google Scholar]

17. Park E, Echetebu C, Soloff S, Soloff M. Oxytocin stimulation of RGS2 mRNA expression in cultured human myometrial cells. Am J Physiol Endocrinol Metab. 2002;282:E580–E584. [PubMed] [Google Scholar]

18. Franczak A, Woclawek-Potocka I, Oponowicz A, Kurowicka B, Kotwica G. Oxytocin stimulates prostaglandin F2alpha secretion and prostaglandin F synthase protein expression in porcine myometrial tissue. Reprod Biol. 2004;4:177–184. [PubMed] [Google Scholar]

19. Oldenhof AD, Shynlova OP, Liu M, Langille BL, Lye SJ. Mitogen-activated protein kinases mediate stretch-induced c-fos mRNA expression in myometrial smooth muscle cells. Am J Physiol Cell Physiol. 2002;283:C1530–C1539. [PubMed] [Google Scholar]

20. Devost D, Girotti M, Carrier M, Russo C, Zingg H. Oxytocin induces dephosphorylation of eukaryotic elongation factor 2 in human myometrial cells. Endocrinology. 2005;146:2265–2270. [PubMed] [Google Scholar]

21. Luckas JJ, Taggart MJ, Wray S. Intracellular calcium stores and agonist-induced contractions in isolated human myometrium. Am J Obstet Gynecol. 1999;181:468–476. [PubMed] [Google Scholar]

22. Fu X, Liu Y, Ciray N, Olovsson M, Ulmsten U, Gylfe E. Oxytocin-induced oscillations of cytoplasmic Ca2+ in human myometrial cells. Acta Obstet Gynecol Scand. 2000;79:174–179. [PubMed] [Google Scholar]

23. Molnar M, Hertelendy F. Signal transduction in rat myometrial cells: comparison of the actions of endothelin-1, oxytocin and prostaglandin F2 alpha. Eur J Endocrinol. 1995;133:467–474. [PubMed] [Google Scholar]

24. Ohmichi M, Koike KKA, Masuhara K, Ikegami H, Ikebuchi Y, Kanzaki T, et al. Role of mitogen-activated protein kinase pathway in prostaglandin F2a-induced rat puerperal uterine contraction. Endocrinology. 1997;138:3103–3111. [PubMed] [Google Scholar]

25. Anwer K, Monga M, Sanborn BM. Epidermal growth factor increases phosphoinositide turnover and intracellular free calcium in an immortalized human myometrial cell line independent of the arachidonic acid metabolic pathway. Am J Obstet Gynecol. 1996;174:676–681. [PubMed] [Google Scholar]

26. Barhoumi R, Awooda I, Mouneimne Y, Safe S, Burghardt R. Effects of benzo-a-pyrene on oxytocin-induced Ca2+ oscillations in myometrial cells. Toxicol Lett. 2006;165:133–141. [PubMed] [Google Scholar]

27. Wang Y, Wu J, Wang Z. Akt binds to and phosphorylates phospholipase C-gamma1 in response to epidermal growth factor. Mol Biol Cell. 2006;17:2267–2277. [PMC free article] [PubMed] [Google Scholar]

28. Robin P, Boulven I, Bole-Feysot C, Tanfin Z, Leiber D. Contribution of PKC-dependent and -independent processes in temporal ERK regulation by ET-1, PDGF, and EGF in rat myometrial cells. Am J Physiol Cell Physiol. 2004;286:C798–C806. [PubMed] [Google Scholar]

29. Kornyei J, Li X, Lei Z, Rao C. Analysis of epidermal growth factor action in human myometrial smooth muscle cells. J Endocrinol. 1995;146:261–270. [PubMed] [Google Scholar]

30. Leiber D, Banno Y, Tanfin Z. Exogenous sphingosine 1-phosphate and sphingosine kinase activated by endothelin-1 induced myometrial contraction through differential mechanisms. Am J Physiol Cell Physiol. 2007;292:C240–C250. [PubMed] [Google Scholar]

31. Wray S, Burdyga T, Noble K. Calcium signalling in smooth muscle. Cell Calcium. 2005;38:397–407. [PubMed] [Google Scholar]

32. Keef K, Hume J, Zhong J. Regulation of cardiac and smooth muscle Ca(2+) channels (Ca(V)1.2a,b) by protein kinases. Am J Physiol Cell Physiol. 2001;281:C1743–C1746. [PubMed] [Google Scholar]

33. Mershon J, Mikala G, Schwartz A. Changes in the expression of the L-type voltage-dependent calcium channel during pregnancy and parturition in the rat. Biol Reprod. 1994;51:993–999. [PubMed] [Google Scholar]

34. Tezuka N, Ali M, Chwalisz IK, Garfield RE. Changes in transcripts encoding calcium channel subunits of rat myometrium during pregnancy. Am J Physiol. 1995;269:C1008–C1017. [PubMed] [Google Scholar]

35. Collins P, Moore J, Lundgren D, Choobineh E, Chang S, Chang A. Gestational changes in uterine L-type calcium channel function and expression in guinea pig. Biol Reprod. 2000;63:1262–1270. [PubMed] [Google Scholar]

36. Ohkubo T, Kawarabayashi T, Inoue Y, Kitamura K. Differential expression of L- and T-type calcium channels between longitudinal and circular muscles of the rat myometrium during pregnancy. Gynecol Obstet Invest. 2005;59:80–85. [PubMed] [Google Scholar]

37. Helguera G, Olcese R, Song M, Toro L, Stefani E. Tissue-specific regulation of Ca2+ channel protein expression by sex hormones. Biochim Biophys Acta. 2002:59–66. [PubMed] [Google Scholar]

38. Poli E, Rusagara J, Coruzzi G, Bertaccini G. Dihydropyridine receptors in the pregnant human uterus in vitro. Pharmacology. 1989;39:309–316. [PubMed] [Google Scholar]

39. Ulmsten U, Andersson K, Forman A. Relaxing effects of Nifedipine on the nonpregnant human uterus in vitro and in vivo. Obstet Gynecol. 1978;52:436–441. [PubMed] [Google Scholar]

40. Forman A, Andersson K, Maigaard S. Effects of calcium channel blockers on the female genital tract. Acta Pharmacol Toxicol (Copenh) 1986;58:183–192. [PubMed] [Google Scholar]

41. Young R, Zhang P. Inhibition of in vitro contractions of human myometrium by mibefradil, a T-type calcium channel blocker: support for a model using excitation-contraction coupling, and autocrine and paracrine signaling mechanisms. J Soc Gynecol Investig. 2005;12:e7–e12. [PubMed] [Google Scholar]

42. Phillippe M, Basa A. Effects of sodium and calcium channel blockade on cytosolic calcium oscillations and phasic contractions of myometrial tissue. J Soc Gynecol Investig. 1997;4:72–77. [PubMed] [Google Scholar]

43. Longo M, Jain V, Vedernikov Y, Hankins G, Garfield R, Saade G. Effects of L-type Ca(2+)-channel blockade, K(+)(ATP)-channel opening and nitric oxide on human uterine contractility in relation to gestational age and labour. Hum Reprod. 2003;9:159–164. [PubMed] [Google Scholar]

44. Maiggard S, Forman A, Brogaard-Hansen K, Andersson K. Inhibitory effects of nitrendipine on myometrial and vascular smooth muscle in human pregnant uterus and placenta. Acta Pharmacol Toxicol (Copenh) 1986;59:1–10. [PubMed] [Google Scholar]

45. Arnaudeau S, Lepretre N, Mironneau J. Oxytocin mobilizes calcium from a unique heparin-sensitive and thapsigargin-sensitive store in single myometrial cells from pregnant rats. Pflugers Arch. 1994;4284287:51–59. [PubMed] [Google Scholar]

46. Holda JR, Oberti C, Perez-Reyes E, Blatter LA. Characterization of an oxytocin-induced rise in [Ca2+]i in single human myometrium smooth muscle cells. Cell Calcium. 1996;20:43–51. [PubMed] [Google Scholar]

47. Maka F, Breuiller-Fouche M, Geny B, Ferre F. Prostaglandin F2 alpha stimulates inositol phosphate production in human pregnant myometrium. Prostaglandins. 1993;45:269–283. [PubMed] [Google Scholar]

48. Mironneau J. Effects of oxytocin on ionic currents underlying rhythmic activity and contraction in uterine smooth muscle. Pflugers Arch. 1976;363:113–118. [PubMed] [Google Scholar]

49. Inoue Y, Shimamura K, Sperelakis N. Oxytocin actions on voltage--dependent ionic channels in pregnant rat uterine smooth muscle cells. Can J Physiol Pharmacol. 1992;70:1597–1603. [PubMed] [Google Scholar]

50. Callaghan B, Zhong J, Keef K. Signalling pathway underlying stimulation of L-type Ca2+ channels in rabbit portal vein myocytes by recombinant Gβ{γ} subunits. Am J Physiol Heart Circ Physiol. 2006;291:H2541–H2546. [PubMed] [Google Scholar]

51. Arnaudeau S, Lepretre N, Mironneau J. Oxytocin mobilizes calcium from a unique heparin-sensitive and thapsigargin-sensitive store in single myometrial cells from pregnant rats. Pflugers Arch. 1994;428:51–59. [PubMed] [Google Scholar]

52. Coleman HA, Hart JD, Tonta MA, Parkington HC. Changes in the mechanisms involved in uterine contractions during pregnancy in guinea-pigs. J Physiol (Lond) 2000;523:785–798. [PMC free article] [PubMed] [Google Scholar]

53. Parkington HC, Tonta MA, Brennecke SP, Coleman HA. Contractile activity, membrane potential, and cytoplasmic calcium in human uterine smooth muscle in the third trimester of pregnancy and during labor. Am J Obstet Gynecol. 1999;181:1445–1451. [PubMed] [Google Scholar]

54. Ohkubo T, Inoue Y, Kawarabayashi T, Kitamura K. Identification and electrophysiological characteristics of isoforms of T-type calcium channel Ca(v)3.2 expressed in pregnant human uterus. Cell Physiol Biochem. 2005;16:245–254. [PubMed] [Google Scholar]

55. Sanborn BM. Relationship of ion channel activity to control of myometrial calcium. J Soc Gynecol Investig. 2000;7:4–11. [PubMed] [Google Scholar]

56. Mandi G, Sarkar S, Mishra S, Raviprakash V. Effects of calcium channel blocker, mibefradil, and potassium channel opener, pinacidil, on the contractile response of mid-pregnant goat myometrium. Indian J Exp Biol. 2005;43:795–801. [PubMed] [Google Scholar]

57. Asokan K, Sarkar S, Mishra S, Raviprakash V. Effects of mibefradil on uterine contractility. Eur J Pharmacol. 2002;455:65–71. [PubMed] [Google Scholar]

58. Ambudkar I. Ca2+ signaling microdomains: platforms for the assembly and regulation of TRPC channels. Trends Pharmacol Sci. 2006;27:25–32. [PubMed] [Google Scholar]

59. Shlykov SG, Sanborn BM. Stimulation of interacellular Ca 2+ oscillations by diacylglycerol in human myometrial cells. Cell Calcium. 2004;36:157–164. [PubMed] [Google Scholar]

60. Shimamura K, Kusaka M, Sperelakis N. Oxytocin induces an inward current in pregnant rat myometrial cells. Can J Physiol Pharmacol. 1994;72:759–763. [PubMed] [Google Scholar]

61. Dalrymple A, Slater DM, Beech D, Poston L, Tribe RM. Molecular identification and localization of Trp homologues, putative calcium channels, in pregnant human uterus. Mol Hum Reprod. 2002;8:946–951. [PubMed] [Google Scholar]

62. Babich LG, Ku CY, Young HW, Huang H, Blackburn MR, Sanborn BM. Expression of capacitative calcium TrpC proteins in rat myometrium during pregnancy. Biol Reprod. 2004;70:919–924. [PubMed] [Google Scholar]

63. Ku C, Babich L, Word R, Zhong M, Ulloa A, Monga M, et al. Expression of transient receptor channel proteins in human fundal myometrium in pregnancy. J Soc Gynecol Investig. 2006;13:217–225. [PubMed] [Google Scholar]

64. Dalrymple A, Slater DM, Poston L, Tribe RM. Physiological induction of transient receptor potential canonical proteins, calcium entry channels, in human myometrium: influence of pregnancy, labor, and interleukin-1 β J Clin Endocrinol Metab. 2004;89:1291–1300. [PubMed] [Google Scholar]

65. Freichel M, Philipp S, Cavalie A, Flockerzi V. TRPC4 and TRPC4-deficient mice. 2004:189–203. [PubMed] [Google Scholar]

66. Dietrich A, Mederos Y, Gollasch M, Gross V, Storch U, Dubrovska G, et al. Increased vascular smooth muscle contractility in TRPC6−/− mice. Mol Cell Biol. 2005;25:6980–6989. [PMC free article] [PubMed] [Google Scholar]

67. Bush E, Hood D, Papst P, Chapo J, Minobe W, Bristor M, et al. Canonical transient receptor potential channels promote cardiomyocyte hypertrophy through activation of calcineurin signaling. J Biol Chem. 2006;281:33487–33496. [PubMed] [Google Scholar]

68. Dalrymple A, Mahn K, Poston L, Songu-Mize E, Tribe R. Mechanical stretch regulates TRPC expression and calcium entry in human myometrial smooth muscle cells. Mol Hum Reprod. 2007;13:31–39. [PubMed] [Google Scholar]

69. Smyth J, DeHaven W, Jones B, Mercer J, Trebak M, Vazquez G, et al. Emerging perspectives in store-operated Ca2+ entry: roles of Orai, Stim and TRP. Biochim Biophys Acta. 2006;1763:1147–1160. [PubMed] [Google Scholar]

70. Huang G, Zeng W, Kim J, Yuan J, Han L, Muallem S, et al. STIM1 carboxyl-terminus activates native SOC, I(crac) and TRPC1 channels. Nat Cell Biol. 2006;8:1003–1010. [PubMed] [Google Scholar]

71. Liao Y, Erxleben C, Yildirim E, Abramowitz J, Armstrong D, Birnbaumer L. Orai proteins interact with TRPC channels and confer responsiveness to store depletion. Proc Natl Acad Sci U S A. 2007;104:4682–4687. [PMC free article] [PubMed] [Google Scholar]

72. Csutora P, Zarayskiv V, Peter K, Monje F, Smani T, Zakharow S, et al. Activation mechanism for CRAC current and store-operated Ca2+ entry: calcium influx factor and Ca2+-independent phospholipase A2beta-mediated pathway. J Biol Chem. 2006;281:34926–34935. [PubMed] [Google Scholar]

73. Tribe RM, Moriarty P, Poston L. Calcium homeostatic pathways change with gestation in human myometrium. Biol Reprod. 2000;63:748–755. [PubMed] [Google Scholar]

74. Penniston J, Enyedi A. Modulation of the plasma membrane Ca2+ pump. J Membr Biol. 1998;165:101–109. [PubMed] [Google Scholar]

75. Matthew A, Kupittayanant S, Burdyga T, Wray S. Characterization of contractile activity and intracellular Ca2+ signalling in mouse myometrium. J Soc Gynecol Investig. 2004;11:207–212. [PubMed] [Google Scholar]

76. Shmigol A, Eisner D, Wray S. Properties of voltage-activated [Ca2+]i transients in single smooth muscle cells isolated from pregnant rat uterus. J Physiol. 1998;511:803–811. [PMC free article] [PubMed] [Google Scholar]

77. Martin C, Chapman KE, Thornton S, Ashley RH. Changes in the expression of myometrial ryanodine receptor mRNAs during human pregnancy. Biochim Biophys Acta. 1999;1451:343–352. [PubMed] [Google Scholar]

78. Mesonero JE, Tanfin Z, Hilly M, Colosetti P, Mauger JP, Harbon S. Differential expression of inositol 1,4,5-trisphosphate receptor types 1, 2, and 3 in rat myometrium and endometrium during gestation. Biol Reprod. 2000;63:532–537. [PubMed] [Google Scholar]

79. Bermeo M, Fomin V, Ventolini G, Gibbs S, McKenna D, Hurd W. Magnesium sulfate induces translocation of protein kinase C isoenzymes alpha and delta in myometrial cells from pregnant women. Am J Obstet Gynecol. 2004;191:1051–1052. [PubMed] [Google Scholar]

80. Mhaouty-Kodja S, Houdeau E, LeGrand C. Regulation of myometrial phospholipase C system and uterine contraction by beta-adrenergic receptors in midpregnant rat. Biol Reprod. 2004;70:570–576. [PubMed] [Google Scholar]

81. Dodge KL, Sanborn BM. Evidence for inhibition by protein kinase A of receptor/G alpha(q)/phospholipase C (PLC) coupling by a mechanism not involving PLCbeta2. Endocrinology. 1998;139:2265–2271. [PubMed] [Google Scholar]

82. Catterall W. Structure and regulation of voltage-gated Ca2+ channels. Annu Rev Cell Dev Biol. 2000;16:521–55. [PubMed] [Google Scholar]

83. Kusaka M, Sperelakis N. Stimulation of Ca2+ current by phorbol esters in rat myometrial cells is dependent on intracellular Ca2+ concentration. Reprod Fertil Dev. 1996;8:1147–1152. [PubMed] [Google Scholar]

84. Chemin J, Traboulsie A, Lory P. Molecular pathways underlying the modulation of T-type channels by neurotransmitters and hormones. Cell Calcium. 2006;40:121–134. [PubMed] [Google Scholar]

85. Paul RJ, Shull GE, Kranias EG. The sarcoplasmic reticulum and smooth muscle function: evidence from transgenic mice. Novartis Found Symp. 2002;246:228–238. [PubMed] [Google Scholar]

86. Schlossmann J, Ammendola A, Ashman K, Zong X, Huber A, Neubauer G, et al. Regulation of intracellular calcium by a signalling complex of IRAG, IP3 receptor and cGMP kinase lbeta. Nature. 200;404:197–201. [PubMed] [Google Scholar]

87. Ostrom RS, Post SR, Insel PA. Stoichiometry and compartmentation in G protein-coupled receptor signaling: implications for therapeutic interventions involving Gx1. J Pharm Exp Therapeutics. 2000;294:407–412. [PubMed] [Google Scholar]

88. Daniel E, El-Yazbi A, Cho W. Caveolae and calcium handling, a review and a hypothesis. J Cell Mol Med. 2006;10:529–544. [PMC free article] [PubMed] [Google Scholar]

89. Brazer SC, Singh BB, Liu X, Swaim W, Ambudkar IS. Caveolin-1 contributes to assembly of store-operated Ca2+ influx channels by regulating plasma membrane localization of TRPC1. J Biol Chem. 2003;278:27208–27215. [PMC free article] [PubMed] [Google Scholar]

90. Kwiatek A, Minshall R, Cool D, Skidgel R, Malik A, Tiruppathi C. Caveolin-1 regulates store-operated Ca2+ influx by binding of its scaffolding domain to transient receptor potential channel-1 in endothelial cells. Mol Pharmacol. 2006;70:1174–1183. [PubMed] [Google Scholar]

91. Davare MA, Avdonin V, Hall DD, Peden EM, Burette A, Weinberg RJ, et al. A b2 adrenergic receptor signaling complex assembled with the Ca2+ channel Cav 12. Science. 2001;293:98–101. [PubMed] [Google Scholar]

92. Suh P, Hwang J, Ryu S, Donowitz M, Kim J. The roles of PDZ-containing proteins in PLC-b-mediated signaling. Biochem Biophy Res Comm. 2001;288:1–7. [PubMed] [Google Scholar]

93. Gardner L, Naren A, Bahouth S. Assembly of an SAP97-AKAP79-cAMP-dependent protein kinase scaffold at the type 1 PSD-95/DLG/ZO1 motif of the human beta(1)-adrenergic receptor generates a receptosome involved in receptor recycling and networking. J Biol Chem. 2006;282:5085–5099. [PubMed] [Google Scholar]

94. Hilgemann D, Feng S, Nasuhoglu C. The complex and intriguing lives of PIP2 with ion channels and transporters. Sci STKE 2001. 2001:RE19. [PubMed] [Google Scholar]

95. Turi A, Kiss AL, Mullner N. Estrogen downregulates the number of caveolae and the level of caveolin in uterine smooth muscle. Cell Biol Int. 2001;25:785–794. [PubMed] [Google Scholar]

96. Taggart MJ, Leavis P, Feron O, Morgan KG. Inhibition of PKCalpha and rhoA translocation in differentiated smooth muscle by a caveolin scaffolding domain peptide. Exp Cell Res. 2000;258:72–81. [PubMed] [Google Scholar]

97. Gimpl G, Fahrenholz F. Human oxytocin receptors in cholesterol-rich vs. cholesterol-poor microdomains of the plasma membrane. Eur J Biochem. 2000;267:2483–2497. [PubMed] [Google Scholar]

98. Reversi A, Rimoldi V, Brambillasca S, Chini B. Effects of cholesterol manipulation on the signaling of the human oxytocin receptor. Am J Physiol Requl Integr Comp Physiol. 2006;291:R861–R869. [PubMed] [Google Scholar]

99. Dodge KL, Carr DW, Sanborn BM. Protein kinase A anchoring to the myometrial plasma membrane is required for cyclic adenosine 3′,5′-monophosphate regulation of phosphatidylinositide turnover. Endocrinology. 1999;140:5165–5170. [PubMed] [Google Scholar]

100. Dodge KL, Carr DW, Yue C, Sanborn BM. A role for AKAP (A kinase anchoring protein) scaffolding in the loss of a cyclic adenosine 3′,5′-monophosphate inhibitory response in late pregnant rat myometrium. Mol Endocrinol. 1999;13:1977–1987. [PubMed] [Google Scholar]

101. Ku CY, Word A, Sanborn BM. Differential expression of protein kinase A, AKAP79 and PP2B in pregnant human myometrial membranes prior to and during labor. J Soc Gynecol Investig. 2005;12:1509–1515. [PubMed] [Google Scholar]


Page 2

What are the steps of a hormone signaling pathway?

Schematic diagram showing the major components that control [Ca2+]i in myometrium. These include the contractant hormone pathways that stimulate G-protein coupled (GPCR) and tyrosine kinase (TyKR) receptors, G-proteins composed of Gα subunits (Gαq, Gαi and (not shown) Gαh), the associated Gβ and Gγ subunits, phospholipase C β and γ, which convert PIP2 to IP3 and diacylglycerol (DAG). IP3 binds to IP3 receptors (IP3R) in the endoplasmic reticulum (ER), releasing Ca2+ from this intracellular store. Another ER release mechanism involves ryanodine receptors (RyR). Other Ca2+ entry mechanisms include cation channels responsive to stimuli such as IP3R activation, DAG and release of Ca2+ from the ER (SRCE) and voltage-operated Ca2+ channels (VOC). The plasma membrane Ca2+ ATPase (PMCA) and the Na/Ca exchanger (NCX) are responsible for moving Ca2+ out of the cell; the ER Ca2+ ATPase (SERCA) pumps Ca2+ back into the ER. There is also a passive leak of Ca2+ from the ER. Ca2+ has stimulatory effects on the contractile apparatus, resulting in contraction, and also acts as an intracellular signal influencing a number of pathways in the myometrium.

  • What are the steps of a hormone signaling pathway?
  • What are the steps of a hormone signaling pathway?

Click on the image to see a larger version.