In C++ a value can be raised to a power by using

1. Lang JM, Rothman KJ, Cann CI. That confounded P-value. Epidemiology. 1998;9:7–8. doi: 10.1097/00001648-199801000-00004. [PubMed] [CrossRef] [Google Scholar]

2. Trafimow D, Marks M. Editorial. Basic Appl Soc Psychol. 2015;37:1–2. doi: 10.1080/01973533.2015.1012991. [CrossRef] [Google Scholar]

3. Ashworth A. Veto on the use of null hypothesis testing and p intervals: right or wrong? Taylor & Francis Editor. 2015. Resources online, http://editorresources.taylorandfrancisgroup.com/veto-on-the-use-of-null-hypothesis-testing-and-p-intervals-right-or-wrong/. Accessed 27 Feb 2016.

4. Flanagan O. Journal’s ban on null hypothesis significance testing: reactions from the statistical arena. 2015. Stats Life online, https://www.statslife.org.uk/opinion/2114-journal-s-ban-on-null-hypothesis-significance-testing-reactions-from-the-statistical-arena. Accessed 27 Feb 2016.

5. Altman DG, Machin D, Bryant TN, Gardner MJ, editors. Statistics with confidence. 2. London: BMJ Books; 2000. [Google Scholar]

6. Atkins L, Jarrett D. The significance of “significance tests” In: Irvine J, Miles I, Evans J, editors. Demystifying social statistics. London: Pluto Press; 1979. [Google Scholar]

7. Cox DR. The role of significance tests (with discussion) Scand J Stat. 1977;4:49–70. [Google Scholar]

8. Cox DR. Statistical significance tests. Br J Clin Pharmacol. 1982;14:325–331. doi: 10.1111/j.1365-2125.1982.tb01987.x. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

9. Cox DR, Hinkley DV. Theoretical statistics. New York: Chapman and Hall; 1974. [Google Scholar]

10. Freedman DA, Pisani R, Purves R. Statistics. 4. New York: Norton; 2007. [Google Scholar]

11. Gigerenzer G, Swijtink Z, Porter T, Daston L, Beatty J, Kruger L. The empire of chance: how probability changed science and everyday life. New York: Cambridge University Press; 1990. [Google Scholar]

12. Harlow LL, Mulaik SA, Steiger JH. What if there were no significance tests? New York: Psychology Press; 1997. [Google Scholar]

13. Hogben L. Statistical theory. London: Allen and Unwin; 1957. [Google Scholar]

14. Kaye DH, Freedman DA. Reference guide on statistics. In: Reference manual on scientific evidence, 3rd ed. Washington, DC: Federal Judicial Center; 2011. p. 211–302.

15. Morrison DE, Henkel RE, editors. The significance test controversy. Chicago: Aldine; 1970. [Google Scholar]

16. Oakes M. Statistical inference: a commentary for the social and behavioural sciences. Chichester: Wiley; 1986. [Google Scholar]

17. Pratt JW. Bayesian interpretation of standard inference statements. J Roy Stat Soc B. 1965;27:169–203. [Google Scholar]

18. Rothman KJ, Greenland S, Lash TL. Modern epidemiology. 3. Philadelphia: Lippincott-Wolters-Kluwer; 2008. [Google Scholar]

19. Ware JH, Mosteller F, Ingelfinger JA. p-Values. In: Bailar JC, Hoaglin DC, editors. Ch. 8. Medical uses of statistics. 3. Hoboken, NJ: Wiley; 2009. pp. 175–194. [Google Scholar]

20. Ziliak ST, McCloskey DN. The cult of statistical significance: how the standard error costs us jobs, justice and lives. Ann Arbor: U Michigan Press; 2008. [Google Scholar]

21. Altman DG, Bland JM. Absence of evidence is not evidence of absence. Br Med J. 1995;311:485. doi: 10.1136/bmj.311.7003.485. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

22. Anscombe FJ. The summarizing of clinical experiments by significance levels. Stat Med. 1990;9:703–708. doi: 10.1002/sim.4780090617. [PubMed] [CrossRef] [Google Scholar]

23. Bakan D. The test of significance in psychological research. Psychol Bull. 1966;66:423–437. doi: 10.1037/h0020412. [PubMed] [CrossRef] [Google Scholar]

24. Bandt CL, Boen JR. A prevalent misconception about sample size, statistical significance, and clinical importance. J Periodontol. 1972;43:181–183. doi: 10.1902/jop.1972.43.3.181. [PubMed] [CrossRef] [Google Scholar]

25. Berkson J. Tests of significance considered as evidence. J Am Stat Assoc. 1942;37:325–335. doi: 10.1080/01621459.1942.10501760. [CrossRef] [Google Scholar]

26. Bland JM, Altman DG. Best (but oft forgotten) practices: testing for treatment effects in randomized trials by separate analyses of changes from baseline in each group is a misleading approach. Am J Clin Nutr. 2015;102:991–994. doi: 10.3945/ajcn.115.119768. [PubMed] [CrossRef] [Google Scholar]

27. Chia KS. “Significant-itis”—an obsession with the P-value. Scand J Work Environ Health. 1997;23:152–154. doi: 10.5271/sjweh.193. [PubMed] [CrossRef] [Google Scholar]

28. Cohen J. The earth is round (p < 0.05) Am Psychol. 1994;47:997–1003. doi: 10.1037/0003-066X.49.12.997. [CrossRef] [Google Scholar]

29. Evans SJW, Mills P, Dawson J. The end of the P-value? Br Heart J. 1988;60:177–180. doi: 10.1136/hrt.60.3.177. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

30. Fidler F, Loftus GR. Why figures with error bars should replace p values: some conceptual arguments and empirical demonstrations. J Psychol. 2009;217:27–37. [Google Scholar]

31. Gardner MA, Altman DG. Confidence intervals rather than P values: estimation rather than hypothesis testing. Br Med J. 1986;292:746–750. doi: 10.1136/bmj.292.6522.746. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

32. Gelman A. P-values and statistical practice. Epidemiology. 2013;24:69–72. doi: 10.1097/EDE.0b013e31827886f7. [PubMed] [CrossRef] [Google Scholar]

33. Gelman A, Loken E. The statistical crisis in science: Data-dependent analysis—a “garden of forking paths”—explains why many statistically significant comparisons don’t hold up. Am Sci. 2014;102:460–465. Erratum at http://andrewgelman.com/2014/10/14/didnt-say-part-2/. Accessed 27 Feb 2016.

34. Gelman A, Stern HS. The difference between “significant” and “not significant” is not itself statistically significant. Am Stat. 2006;60:328–331. doi: 10.1198/000313006X152649. [CrossRef] [Google Scholar]

35. Gigerenzer G. Mindless statistics. J Socioecon. 2004;33:567–606. [Google Scholar]

36. Gigerenzer G, Marewski JN. Surrogate science: the idol of a universal method for scientific inference. J Manag. 2015;41:421–440. [Google Scholar]

37. Goodman SN. A comment on replication, p-values and evidence. Stat Med. 1992;11:875–879. doi: 10.1002/sim.4780110705. [PubMed] [CrossRef] [Google Scholar]

38. Goodman SN. P-values, hypothesis tests and likelihood: implications for epidemiology of a neglected historical debate. Am J Epidemiol. 1993;137:485–496. [PubMed] [Google Scholar]

39. Goodman SN. Towards evidence-based medical statistics, I: the P-value fallacy. Ann Intern Med. 1999;130:995–1004. doi: 10.7326/0003-4819-130-12-199906150-00008. [PubMed] [CrossRef] [Google Scholar]

40. Goodman SN. A dirty dozen: twelve P-value misconceptions. Semin Hematol. 2008;45:135–140. doi: 10.1053/j.seminhematol.2008.04.003. [PubMed] [CrossRef] [Google Scholar]

41. Greenland S. Null misinterpretation in statistical testing and its impact on health risk assessment. Prev Med. 2011;53:225–228. doi: 10.1016/j.ypmed.2011.08.010. [PubMed] [CrossRef] [Google Scholar]

42. Greenland S. Nonsignificance plus high power does not imply support for the null over the alternative. Ann Epidemiol. 2012;22:364–368. doi: 10.1016/j.annepidem.2012.02.007. [PubMed] [CrossRef] [Google Scholar]

43. Greenland S. Transparency and disclosure, neutrality and balance: shared values or just shared words? J Epidemiol Community Health. 2012;66:967–970. doi: 10.1136/jech-2011-200459. [PubMed] [CrossRef] [Google Scholar]

44. Greenland S, Poole C. Problems in common interpretations of statistics in scientific articles, expert reports, and testimony. Jurimetrics. 2011;51:113–129. [Google Scholar]

45. Greenland S, Poole C. Living with P-values: resurrecting a Bayesian perspective on frequentist statistics. Epidemiology. 2013;24:62–68. doi: 10.1097/EDE.0b013e3182785741. [PubMed] [CrossRef] [Google Scholar]

46. Greenland S, Poole C. Living with statistics in observational research. Epidemiology. 2013;24:73–78. doi: 10.1097/EDE.0b013e3182785a49. [PubMed] [CrossRef] [Google Scholar]

47. Grieve AP. How to test hypotheses if you must. Pharm Stat. 2015;14:139–150. doi: 10.1002/pst.1667. [PubMed] [CrossRef] [Google Scholar]

48. Hoekstra R, Finch S, Kiers HAL, Johnson A. Probability as certainty: dichotomous thinking and the misuse of p-values. Psychon Bull Rev. 2006;13:1033–1037. doi: 10.3758/BF03213921. [PubMed] [CrossRef] [Google Scholar]

49. Hurlbert Lombardi CM. Final collapse of the Neyman–Pearson decision theoretic framework and rise of the neoFisherian. Ann Zool Fenn. 2009;46:311–349. doi: 10.5735/086.046.0501. [CrossRef] [Google Scholar]

50. Kaye DH. Is proof of statistical significance relevant? Wash Law Rev. 1986;61:1333–1366. [Google Scholar]

51. Lambdin C. Significance tests as sorcery: science is empirical—significance tests are not. Theory Psychol. 2012;22(1):67–90. doi: 10.1177/0959354311429854. [CrossRef] [Google Scholar]

52. Langman MJS. Towards estimation and confidence intervals. BMJ. 1986;292:716. doi: 10.1136/bmj.292.6522.716. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

53. LeCoutre M-P, Poitevineau J, Lecoutre B. Even statisticians are not immune to misinterpretations of null hypothesis tests. Int J Psychol. 2003;38:37–45. doi: 10.1080/00207590244000250. [CrossRef] [Google Scholar]

54. Lew MJ. Bad statistical practice in pharmacology (and other basic biomedical disciplines): you probably don’t know P. Br J Pharmacol. 2012;166:1559–1567. doi: 10.1111/j.1476-5381.2012.01931.x. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

55. Loftus GR. Psychology will be a much better science when we change the way we analyze data. Curr Dir Psychol. 1996;5:161–171. doi: 10.1111/1467-8721.ep11512376. [CrossRef] [Google Scholar]

56. Matthews JNS, Altman DG. Interaction 2: Compare effect sizes not P values. Br Med J. 1996;313:808. doi: 10.1136/bmj.313.7060.808. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

57. Pocock SJ, Ware JH. Translating statistical findings into plain English. Lancet. 2009;373:1926–1928. doi: 10.1016/S0140-6736(09)60499-2. [PubMed] [CrossRef] [Google Scholar]

58. Pocock SJ, Hughes MD, Lee RJ. Statistical problems in the reporting of clinical trials. N Eng J Med. 1987;317:426–432. doi: 10.1056/NEJM198708133170706. [PubMed] [CrossRef] [Google Scholar]

59. Poole C. Beyond the confidence interval. Am J Public Health. 1987;77:195–199. doi: 10.2105/AJPH.77.2.195. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

60. Poole C. Confidence intervals exclude nothing. Am J Public Health. 1987;77:492–493. doi: 10.2105/AJPH.77.4.492. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

61. Poole C. Low P-values or narrow confidence intervals: which are more durable? Epidemiology. 2001;12:291–294. doi: 10.1097/00001648-200105000-00005. [PubMed] [CrossRef] [Google Scholar]

62. Rosnow RL, Rosenthal R. Statistical procedures and the justification of knowledge in psychological science. Am Psychol. 1989;44:1276–1284. doi: 10.1037/0003-066X.44.10.1276. [CrossRef] [Google Scholar]

63. Rothman KJ. A show of confidence. NEJM. 1978;299:1362–1363. doi: 10.1056/NEJM197812142992410. [PubMed] [CrossRef] [Google Scholar]

64. Rothman KJ. Significance questing. Ann Intern Med. 1986;105:445–447. doi: 10.7326/0003-4819-105-3-445. [PubMed] [CrossRef] [Google Scholar]

65. Rozeboom WM. The fallacy of null-hypothesis significance test. Psychol Bull. 1960;57:416–428. doi: 10.1037/h0042040. [PubMed] [CrossRef] [Google Scholar]

66. Salsburg DS. The religion of statistics as practiced in medical journals. Am Stat. 1985;39:220–223. [Google Scholar]

67. Schmidt FL. Statistical significance testing and cumulative knowledge in psychology: Implications for training of researchers. Psychol Methods. 1996;1:115–129. doi: 10.1037/1082-989X.1.2.115. [CrossRef] [Google Scholar]

68. Schmidt FL, Hunter JE. Methods of meta-analysis: correcting error and bias in research findings. 3. Thousand Oaks: Sage; 2014. [Google Scholar]

69. Sterne JAC, Davey Smith G. Sifting the evidence—what’s wrong with significance tests? Br Med J. 2001;322:226–231. doi: 10.1136/bmj.322.7280.226. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

70. Thompson WD. Statistical criteria in the interpretation of epidemiologic data. Am J Public Health. 1987;77:191–194. doi: 10.2105/AJPH.77.2.191. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

71. Thompson B. The “significance” crisis in psychology and education. J Soc Econ. 2004;33:607–613. doi: 10.1016/j.socec.2004.09.034. [CrossRef] [Google Scholar]

72. Wagenmakers E-J. A practical solution to the pervasive problem of p values. Psychon Bull Rev. 2007;14:779–804. doi: 10.3758/BF03194105. [PubMed] [CrossRef] [Google Scholar]

73. Walker AM. Reporting the results of epidemiologic studies. Am J Public Health. 1986;76:556–558. doi: 10.2105/AJPH.76.5.556. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

74. Wood J, Freemantle N, King M, Nazareth I. Trap of trends to statistical significance: likelihood of near significant P value becoming more significant with extra data. BMJ. 2014;348:g2215. doi: 10.1136/bmj.g2215. [PubMed] [CrossRef] [Google Scholar]

75. Stigler SM. The history of statistics. Cambridge, MA: Belknap Press; 1986. [Google Scholar]

76. Neyman J. Outline of a theory of statistical estimation based on the classical theory of probability. Philos Trans R Soc Lond A. 1937;236:333–380. doi: 10.1098/rsta.1937.0005. [CrossRef] [Google Scholar]

77. Edwards W, Lindman H, Savage LJ. Bayesian statistical inference for psychological research. Psychol Rev. 1963;70:193–242. doi: 10.1037/h0044139. [CrossRef] [Google Scholar]

78. Berger JO, Sellke TM. Testing a point null hypothesis: the irreconcilability of P-values and evidence. J Am Stat Assoc. 1987;82:112–139. [Google Scholar]

79. Edwards AWF. Likelihood. 2. Baltimore: Johns Hopkins University Press; 1992. [Google Scholar]

80. Goodman SN, Royall R. Evidence and scientific research. Am J Public Health. 1988;78:1568–1574. doi: 10.2105/AJPH.78.12.1568. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

81. Royall R. Statistical evidence. New York: Chapman and Hall; 1997. [Google Scholar]

82. Sellke TM, Bayarri MJ, Berger JO. Calibration of p values for testing precise null hypotheses. Am Stat. 2001;55:62–71. doi: 10.1198/000313001300339950. [CrossRef] [Google Scholar]

83. Goodman SN. Introduction to Bayesian methods I: measuring the strength of evidence. Clin Trials. 2005;2:282–290. doi: 10.1191/1740774505cn098oa. [PubMed] [CrossRef] [Google Scholar]

84. Lehmann EL. Testing statistical hypotheses. 2. Wiley: New York; 1986. [Google Scholar]

85. Senn SJ. Two cheers for P-values. J Epidemiol Biostat. 2001;6(2):193–204. doi: 10.1080/135952201753172953. [PubMed] [CrossRef] [Google Scholar]

86. Senn SJ. Letter to the Editor re: Goodman 1992. Stat Med. 2002;21:2437–2444. doi: 10.1002/sim.1072. [PubMed] [CrossRef] [Google Scholar]

87. Mayo DG, Cox DR. Frequentist statistics as a theory of inductive inference. In: J Rojo, editor. Optimality: the second Erich L. Lehmann symposium, Lecture notes-monograph series, Institute of Mathematical Statistics (IMS). 2006;49: 77–97.

88. Murtaugh PA. In defense of P-values (with discussion) Ecology. 2014;95(3):611–653. doi: 10.1890/13-0590.1. [PubMed] [CrossRef] [Google Scholar]

89. Hedges LV, Olkin I. Vote-counting methods in research synthesis. Psychol Bull. 1980;88:359–369. doi: 10.1037/0033-2909.88.2.359. [CrossRef] [Google Scholar]

90. Chalmers TC, Lau J. Changes in clinical trials mandated by the advent of meta-analysis. Stat Med. 1996;15:1263–1268. doi: 10.1002/(SICI)1097-0258(19960630)15:12<1263::AID-SIM305>3.0.CO;2-K. [PubMed] [CrossRef] [Google Scholar]

91. Maheshwari S, Sarraj A, Kramer J, El-Serag HB. Oral contraception and the risk of hepatocellular carcinoma. J Hepatol. 2007;47:506–513. doi: 10.1016/j.jhep.2007.03.015. [PubMed] [CrossRef] [Google Scholar]

92. Cox DR. The planning of experiments. New York: Wiley; 1958. p. 161. [Google Scholar]

93. Smith AH, Bates M. Confidence limit analyses should replace power calculations in the interpretation of epidemiologic studies. Epidemiology. 1992;3:449–452. doi: 10.1097/00001648-199209000-00011. [PubMed] [CrossRef] [Google Scholar]

94. Goodman SN. Letter to the editor re Smith and Bates. Epidemiology. 1994;5:266–268. doi: 10.1097/00001648-199403000-00025. [PubMed] [CrossRef] [Google Scholar]

95. Goodman SN, Berlin J. The use of predicted confidence intervals when planning experiments and the misuse of power when interpreting results. Ann Intern Med. 1994;121:200–206. doi: 10.7326/0003-4819-121-3-199408010-00008. [PubMed] [CrossRef] [Google Scholar]

96. Hoenig JM, Heisey DM. The abuse of power: the pervasive fallacy of power calculations for data analysis. Am Stat. 2001;55:19–24. doi: 10.1198/000313001300339897. [CrossRef] [Google Scholar]

97. Senn SJ. Power is indeed irrelevant in interpreting completed studies. BMJ. 2002;325:1304. doi: 10.1136/bmj.325.7375.1304. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

98. Lash TL, Fox MP, Maclehose RF, Maldonado G, McCandless LC, Greenland S. Good practices for quantitative bias analysis. Int J Epidemiol. 2014;43:1969–1985. doi: 10.1093/ije/dyu149. [PubMed] [CrossRef] [Google Scholar]

99. Dwan K, Gamble C, Williamson PR, Kirkham JJ, Reporting Bias Group Systematic review of the empirical evidence of study publication bias and outcome reporting bias—an updated review. PLoS One. 2013;8:e66844. doi: 10.1371/journal.pone.0066844. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

100. Page MJ, McKenzie JE, Kirkham J, Dwan K, Kramer S, Green S, Forbes A. Bias due to selective inclusion and reporting of outcomes and analyses in systematic reviews of randomised trials of healthcare interventions. Cochrane Database Syst Rev. 2014;10:MR000035. [PMC free article] [PubMed]

101. You B, Gan HK, Pond G, Chen EX. Consistency in the analysis and reporting of primary end points in oncology randomized controlled trials from registration to publication: a systematic review. J Clin Oncol. 2012;30:210–216. doi: 10.1200/JCO.2011.37.0890. [PubMed] [CrossRef] [Google Scholar]

102. Button K, Ioannidis JPA, Mokrysz C, Nosek BA, Flint J, Robinson ESJ, Munafò MR. Power failure: why small sample size undermines the reliability of neuroscience. Nat Rev Neurosci. 2013;14:365–376. doi: 10.1038/nrn3475. [PubMed] [CrossRef] [Google Scholar]

103. Eyding D, Lelgemann M, Grouven U, Härter M, Kromp M, Kaiser T, Kerekes MF, Gerken M, Wieseler B. Reboxetine for acute treatment of major depression: systematic review and meta-analysis of published and unpublished placebo and selective serotonin reuptake inhibitor controlled trials. BMJ. 2010;341:c4737. doi: 10.1136/bmj.c4737. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

104. Land CE. Estimating cancer risks from low doses of ionizing radiation. Science. 1980;209:1197–1203. doi: 10.1126/science.7403879. [PubMed] [CrossRef] [Google Scholar]

105. Land CE. Statistical limitations in relation to sample size. Environ Health Perspect. 1981;42:15–21. doi: 10.1289/ehp.814215. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

106. Greenland S. Dealing with uncertainty about investigator bias: disclosure is informative. J Epidemiol Community Health. 2009;63:593–598. doi: 10.1136/jech.2008.084913. [PubMed] [CrossRef] [Google Scholar]

107. Xu L, Freeman G, Cowling BJ, Schooling CM. Testosterone therapy and cardiovascular events among men: a systematic review and meta-analysis of placebo-controlled randomized trials. BMC Med. 2013;11:108. doi: 10.1186/1741-7015-11-108. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

108. Neyman J, Pearson ES. On the use and interpretation of certain test criteria for purposes of statistical inference: part I. Biometrika. 1928;20A:175–240. [Google Scholar]

109. Pearson ES. Statistical concepts in the relation to reality. J R Stat Soc B. 1955;17:204–207. [Google Scholar]

110. Fisher RA. Statistical methods and scientific inference. Edinburgh: Oliver and Boyd; 1956. [Google Scholar]

111. Hill AB. The environment and disease: association or causation? Proc R Soc Med. 1965;58:295–300. [PMC free article] [PubMed] [Google Scholar]

112. Casella G, Berger RL. Reconciling Bayesian and frequentist evidence in the one-sided testing problem. J Am Stat Assoc. 1987;82:106–111. doi: 10.1080/01621459.1987.10478396. [CrossRef] [Google Scholar]

113. Casella G, Berger RL. Comment. Stat Sci. 1987;2:344–417. doi: 10.1214/ss/1177013243. [CrossRef] [Google Scholar]

114. Yates F. The influence of statistical methods for research workers on the development of the science of statistics. J Am Stat Assoc. 1951;46:19–34. [Google Scholar]

115. Cumming G. Understanding the new statistics: effect sizes, confidence intervals, and meta-analysis. London: Routledge; 2011. [Google Scholar]

116. Morey RD, Hoekstra R, Rouder JN, Lee MD, Wagenmakers E-J. The fallacy of placing confidence in confidence intervals. Psychon Bull Rev (in press). [PMC free article] [PubMed]

117. Rosenthal R, Rubin DB. The counternull value of an effect size: a new statistic. Psychol Sci. 1994;5:329–334. doi: 10.1111/j.1467-9280.1994.tb00281.x. [CrossRef] [Google Scholar]

118. Mayo DG, Spanos A. Severe testing as a basic concept in a Neyman–Pearson philosophy of induction. Br J Philos Sci. 2006;57:323–357. doi: 10.1093/bjps/axl003. [CrossRef] [Google Scholar]

119. Whitehead A. Meta-analysis of controlled clinical trials. New York: Wiley; 2002. [Google Scholar]

120. Borenstein M, Hedges LV, Higgins JPT, Rothstein HR. Introduction to meta-analysis. New York: Wiley; 2009. [Google Scholar]

121. Chen D-G, Peace KE. Applied meta-analysis with R. New York: Chapman & Hall/CRC; 2013. [Google Scholar]

122. Cooper H, Hedges LV, Valentine JC. The handbook of research synthesis and meta-analysis. Thousand Oaks: Sage; 2009. [Google Scholar]

123. Greenland S, O’Rourke K. Meta-analysis Ch. 33. In: Rothman KJ, Greenland S, Lash TL, editors. Modern epidemiology. 3. Philadelphia: Lippincott-Wolters-Kluwer; 2008. pp. 682–685. [Google Scholar]

124. Petitti DB. Meta-analysis, decision analysis, and cost-effectiveness analysis: methods for quantitative synthesis in medicine. 2. New York: Oxford U Press; 2000. [Google Scholar]

125. Sterne JAC. Meta-analysis: an updated collection from the Stata journal. College Station, TX: Stata Press; 2009. [Google Scholar]

126. Weinberg CR. It’s time to rehabilitate the P-value. Epidemiology. 2001;12:288–290. doi: 10.1097/00001648-200105000-00004. [PubMed] [CrossRef] [Google Scholar]