Enterohemorrhagic and shiga toxin producing e coli are commonly linked with what type of food

1. Paton JC, Paton AW. Pathogenesis and diagnosis of Shiga toxin-producing Escherichia coli infections. Clin Microbiol Rev. 1998;11:450–79. [PMC free article] [PubMed] [Google Scholar]

2. Heuvelink AE, van den Biggelaar FLAM, de Boer E, Herbes RG, Melchers WJG, Huis in ’t Veld JH, et al. Isolation and characterization of verocytotoxin-producing Escherichia coli O157 strains from Dutch cattle and sheep. J Clin Microbiol. 1998;36:878–82. [PMC free article] [PubMed] [Google Scholar]

3. Karmali MA. Prospects for preventing serious systemic toxemic complications of Shiga toxin-producing Escherichia coli infections using Shiga toxin receptor analogues. J Infect Dis. 2004;189:355–9. doi: 10.1086/381130. [PubMed] [CrossRef] [Google Scholar]

4. Gasser C, Gautier G, Steck A, Siebenmann RE, Oechslin R. Hämolytisch- uramische syndrome. Bilaterale nierenindennekrosen bei akuten erworbenen hämolytischen. Anamien Schweiz Med Woschensch. 1955;85:905–9. [PubMed] [Google Scholar]

5. Pearce MC, Jenkins C, Vali L, Smith AW, Knight HI, Cheasty T, et al. Temporal shedding patterns and virulence factors of Escherichia coli serogroups O26, O103, O111, O145, and O157 in a cohort of beef calves and their dams. Appl Environ Microbiol. 2004;70:1708–16. doi: 10.1128/AEM.70.3.1708-1716.2004. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

6. Willshaw GA, Thirlwell J, Jones AP, Parry S, Salmon RL, Hickey M. Vero cytotoxin-producing Escherichia coli O157 in beefburgers linked to an outbreak of diarrhoea, haemorrhagic colitis and haemolytic uraemic syndrome in Britain. Lett Appl Microbiol. 1994;19:304–7. doi: 10.1111/j.1472-765X.1994.tb00461.x. [PubMed] [CrossRef] [Google Scholar]

7. Griffin PM. Escherichia coli O157:H7 and other enterohaemorrhagic Escherichia coli In: Blaser MJ, Smith PD, Ravdin JI, Greenberg HB, Guerrant RL, eds. Infections of the Gastrointestinal Tract. New York: Raven Press, 1995:739-61. [Google Scholar]

8. Armstrong GL, Hollingsworth J, Morris JG., Jr. Emerging foodborne pathogens: Escherichia coli O157:H7 as a model of entry of a new pathogen into the food supply of the developed world. Epidemiol Rev. 1996;18:29–51. doi: 10.1093/oxfordjournals.epirev.a017914. [PubMed] [CrossRef] [Google Scholar]

9. Olsen SJ, Miller G, Breuer T, Kennedy M, Higgins C, Walford J, et al. A waterborne outbreak of Escherichia coli O157:H7 infections and hemolytic uremic syndrome: implications for rural water systems. Emerg Infect Dis. 2002;8:370–5. doi: 10.3201/eid0804.000218. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

10. Cody SH, Glynn MK, Farrar JA, Cairns KL, Griffin PM, Kobayashi J, et al. An outbreak of Escherichia coli O157:H7 infection from unpasteurized commercial apple juice. Ann Intern Med. 1999;130:202–9. doi: 10.7326/0003-4819-130-3-199902020-00005. [PubMed] [CrossRef] [Google Scholar]

11. Hilborn ED, Mermin JH, Mshar PA, Hadler JL, Voetsch A, Wojtkunski C, et al. A multistate outbreak of Escherichia coli O157:H7 infections associated with consumption of mesclun lettuce. Arch Intern Med. 1999;159:1758–64. doi: 10.1001/archinte.159.15.1758. [PubMed] [CrossRef] [Google Scholar]

12. Askar M, Faber MS, Frank C, Bernard H, Gilsdorf A, Fruth A, et al. Update on the ongoing outbreak of haemolytic uraemic syndrome due to Shiga toxin-producing Escherichia coli (STEC) serotype O104, Germany, May 2011. Euro Surveill. 2011;16:19883. [PubMed] [Google Scholar]

13. Wadl M, Rieck T, Nachtnebel M, Greutélaers B, an der Heiden M, Altmann D, et al.HUS surveillance and laboratory team Enhanced surveillance during a large outbreak of bloody diarrhoea and haemolytic uraemic syndrome caused by Shiga toxin/verotoxin-producing Escherichia coli in Germany, May to June 2011. Euro Surveill. 2011;16:19893. [PubMed] [Google Scholar]

14. Frank C, Werber D, Cramer JP, Askar M, Faber M, an der Heiden M, et al.HUS Investigation Team Epidemic profile of Shiga-toxin-producing Escherichia coli O104:H4 outbreak in Germany. N Engl J Med. 2011;365:1771–80. doi: 10.1056/NEJMoa1106483. [PubMed] [CrossRef] [Google Scholar]

15. Duffy G. Verocytoxigenic Escherichia coli in animal faeces, manures and slurries. J Appl Microbiol. 2003;94(Suppl):94S–103S. doi: 10.1046/j.1365-2672.94.s1.11.x. [PubMed] [CrossRef] [Google Scholar]

16. Rangel JM, Sparling PH, Crowe C, Griffin PM, Swerdlow DL. Epidemiology of Escherichia coli O157:H7 outbreaks, United States, 1982-2002. Emerg Infect Dis. 2005;11:603–9. doi: 10.3201/eid1104.040739. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

17. Werber D, Behnke SC, Fruth A, Merle R, Menzler S, Glaser S, et al. Shiga toxin-producing Escherichia coli infection in Germany: different risk factors for different age groups. Am J Epidemiol. 2007;165:425–34. doi: 10.1093/aje/kwk023. [PubMed] [CrossRef] [Google Scholar]

18. Polifroni R, Etcheverría AI, Fernández D, Sanz ME, Cepeda R, Parma AE, et al. Molecular characterization of Shiga toxin-producing Escherichia coli isolated from the environment of a dairy farm. Curr Microbiol. 2012;65:337–43. doi: 10.1007/s00284-012-0161-0. [PubMed] [CrossRef] [Google Scholar]

19. Elder RO, Keen JE, Siragusa GR, Barkocy-Gallagher GA, Koohmaraie M, Laegreid WW. Correlation of enterohemorrhagic Escherichia coli O157 prevalence in feces, hides, and carcasses of beef cattle during processing. Proc Natl Acad Sci U S A. 2000;97:2999–3003. doi: 10.1073/pnas.97.7.2999. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

20. Aslam M, Nattress F, Greer G, Yost C, Gill C, McMullen L. Origin of contamination and genetic diversity of Escherichia coli in beef cattle. Appl Environ Microbiol. 2003;69:2794–9. doi: 10.1128/AEM.69.5.2794-2799.2003. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

21. McEvoy JM, Doherty AM, Sheridan JJ, Thomson-Carter FM, Garvey P, McGuire L, et al. The prevalence and spread of Escherichia coli O157:H7 at a commercial beef abattoir. J Appl Microbiol. 2003;95:256–66. doi: 10.1046/j.1365-2672.2003.01981.x. [PubMed] [CrossRef] [Google Scholar]

22. Meng J, Doyle MP. Emerging and evolving microbial foodborne pathogens. Bulletin de L'Institut Pasteur. 1998;96:151–64. doi: 10.1016/S0020-2452(98)80010-9. [CrossRef] [Google Scholar]

23. Barlow RS, Gobius KS, Desmarchelier PM. Shiga toxin-producing Escherichia coli in ground beef and lamb cuts: results of a one-year study. Int J Food Microbiol. 2006;111:1–5. doi: 10.1016/j.ijfoodmicro.2006.04.039. [PubMed] [CrossRef] [Google Scholar]

24. Eisel WG, Linton RH, Muriana PM. A survey of microbial levels for incoming raw beef, environmental sources, and ground beef in a red meat processing plant. Food Microbiol. 1997;14:273–82. doi: 10.1006/fmic.1996.0094. [CrossRef] [Google Scholar]

25. Etcheverría AI, Padola NL, Sanz ME, Polifroni R, Krüger A, Passucci J, et al. Occurrence of Shiga toxin-producing E. coli (STEC) on carcasses and retail beef cuts in the marketing chain of beef in Argentina. Meat Sci. 2010;86:418–21. doi: 10.1016/j.meatsci.2010.05.027. [PubMed] [CrossRef] [Google Scholar]

26. Griffin PM, Tauxe RV. The epidemiology of infections caused by Escherichia coli O157:H7, other enterohemorrhagic E. coli, and the associated hemolytic uremic syndrome. Epidemiol Rev. 1991;13:60–98. [PubMed] [Google Scholar]

27. Sandvig K. Shiga toxins. Toxicon. 2001;39:1629–35. doi: 10.1016/S0041-0101(01)00150-7. [PubMed] [CrossRef] [Google Scholar]

28. Gyles CL. Shiga toxin-producing Escherichia coli: an overview. J Anim Sci. 2007;85(Suppl):E45–62. doi: 10.2527/jas.2006-508. [PubMed] [CrossRef] [Google Scholar]

29. Krüger A, Lucchesi PMA, Parma AE. Verotoxins in bovine and meat verotoxin-producing Escherichia coli isolates: type, number of variants, and relationship to cytotoxicity. Appl Environ Microbiol. 2011;77:73–9. doi: 10.1128/AEM.01445-10. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

30. Thorpe CM, Ritchie JM, Acheson DWK. Enterohemorrhagic and other Shiga toxin-producing Escherichia coli. In: Donnenberg MS, ed. Escherichia coli, virulence mechanisms of a versatile pathogen. Academic Press, Boston, 2002: 119–54. [Google Scholar]

31. Friedrich AW, Bielaszewska M, Zhang WL, Pulz M, Kuczius T, Ammon A, et al. Escherichia coli harboring Shiga toxin 2 gene variants: frequency and association with clinical symptoms. J Infect Dis. 2002;185:74–84. doi: 10.1086/338115. [PubMed] [CrossRef] [Google Scholar]

32. Paton AW, Paton JC. Direct detection and characterization of Shiga toxigenic Escherichia coli by multiplex PCR for stx1, stx2, eae, ehxA, and saa. J Clin Microbiol. 2002;40:271–4. doi: 10.1128/JCM.40.1.271-274.2002. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

33. Schmidt H, Beutin L, Karch H. Molecular analysis of the plasmid-encoded hemolysin of Escherichia coli O157:H7 strain EDL 933. Infect Immun. 1995;63:1055–61. [PMC free article] [PubMed] [Google Scholar]

34. Blanco M, Blanco JE, Mora A, Dahbi G, Alonso MP, González EA, et al. Serotypes, virulence genes, and intimin types of Shiga toxin (verotoxin)-producing Escherichia coli isolates from cattle in Spain and identification of a new intimin variant gene (eae-xi) J Clin Microbiol. 2004;42:645–51. doi: 10.1128/JCM.42.2.645-651.2004. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

35. Guth BEC, Prado V, Rivas M. Shiga toxin-producing Escherichia coli In: Torres AG, ed. Pathogenic Escherichia coli in Latin America. Bentham Science Publishers Ltd: United States, 2010:65-83. [Google Scholar]

36. Paton AW, Srimanote P, Woodrow MC, Paton JC. Characterization of Saa, a novel autoagglutinating adhesin produced by locus of enterocyte effacement-negative Shiga-toxigenic Escherichia coli strains that are virulent for humans. Infect Immun. 2001;69:6999–7009. doi: 10.1128/IAI.69.11.6999-7009.2001. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

37. Bustamante AV, Sanso AM, Lucchesi PMA, Parma AE. Multiplex PCR assay for the detection of five putative virulence genes encoded in verotoxigenic Escherichia coli plasmids. Curr Microbiol. 2011;62:1411–5. doi: 10.1007/s00284-011-9877-5. [PubMed] [CrossRef] [Google Scholar]

38. Rivas M, Miliwebsky E, Chinen I, Deza N, Leotta G. Epidemiología del síndrome urémico hemolítico en Argentina. Diagnóstico del agente etiológico, reservorios y vías de transmisión. Medicina (Buenos Aires) 2006;66(Suppl 3):27–32. [PubMed] [Google Scholar]

39. Blanco M, Padola NL, Krüger A, Sanz ME, Blanco JE, González EA, et al. Virulence genes and intimin types of Shiga-toxin-producing Escherichia coli isolated from cattle and beef products in Argentina. Int Microbiol. 2004;7:269–76. [PubMed] [Google Scholar]

40. Bettelheim KA. The non-O157 shiga-toxigenic (verocytotoxigenic) Escherichia coli; under-rated pathogens. Crit Rev Microbiol. 2007;33:67–87. doi: 10.1080/10408410601172172. [PubMed] [CrossRef] [Google Scholar]

41. Konowalchuk J, Speirs JI, Stavric S. Vero response to a cytotoxin of Escherichia coli. Infect Immun. 1977;18:775–9. [PMC free article] [PubMed] [Google Scholar]

42. Nataro JP, Kaper JB. Diarrheagenic Escherichia coli. Clin Microbiol Rev. 1998;11:142–201. [PMC free article] [PubMed] [Google Scholar]

43. Rivero MA, Padola NL, Etcheverría AI, Parma AE. Escherichia coli enterohemorrágica y síndrome urémico hemolítico en Argentina. Medicina (B Aires) 2004;64:352–6. [PubMed] [Google Scholar]

44. Padola NL, Sanz ME, Blanco JE, Blanco M, Blanco J, Etcheverria AI, et al. Serotypes and virulence genes of bovine Shigatoxigenic Escherichia coli (STEC) isolated from a feedlot in Argentina. Vet Microbiol. 2004;100:3–9. doi: 10.1016/S0378-1135(03)00127-5. [PubMed] [CrossRef] [Google Scholar]

45. Fernández D, Sanz ME, Parma AE, Padola NL. Short communication: characterization of Shiga toxin-producing Escherichia coli isolated from newborn, milk-fed and growing dairy calves. J Dairy Sci. 2012;95:5340–3. doi: 10.3168/jds.2011-5140. [PubMed] [CrossRef] [Google Scholar]

46. Padola NL, Etcheverría AI, Lucchesi PMA, Krüger A, Sanz ME, Fernández D, et al. Prevalent STEC serotypes isolated from cattle, foods and environment in Argentina. Zoonoses Public Health. 2012;59(Suppl. 1):81. [Google Scholar]

47. Lucchesi PMA, Krüger A, Padola NL, Etcheverría AI, Sanz ME, Fernández D, et al. Differences in virulence genes frequency among VTEC isolates from cattle, foods and environment. Zoonoses Public Health. 2012;59(Suppl. 1):71. [Google Scholar]

48. Chinen I, Otero JL, Miliwebsky ES, Roldán ML, Baschkier A, Chillemi GM, et al. Isolation and characterisation of Shiga toxin-producing Escherichia coli O157:H7 from calves in Argentina. Res Vet Sci. 2003;74:283–6. doi: 10.1016/S0034-5288(02)00192-3. [PubMed] [CrossRef] [Google Scholar]

49. Meichtri L, Miliwebsky E, Gioffré A, Chinen I, Baschkier A, Chillemi GM, et al. Shiga toxin-producing Escherichia coli in healthy young beef steers from Argentina: prevalence and virulence properties. Int J Food Microbiol. 2004;96:189–98. doi: 10.1016/j.ijfoodmicro.2004.03.018. [PubMed] [CrossRef] [Google Scholar]

50. Mercado EC, Gioffré A, Rodríguez SM, Cataldi A, Irino K, Elizondo AM, et al. Non-O157 Shiga toxin-producing Escherichia coli isolated from diarrhoeic calves in Argentina. J Vet Med B Infect Dis Vet Public Health. 2004;51:82–8. doi: 10.1111/j.1439-0450.2004.00729.x. [PubMed] [CrossRef] [Google Scholar]

51. Parma AE, Sanz ME, Blanco JE, Blanco J, Viñas MR, Blanco M, et al. Virulence genotypes and serotypes of verotoxigenic Escherichia coli isolated from cattle and foods in Argentina. Importance in public health. Eur J Epidemiol. 2000;16:757–62. doi: 10.1023/A:1026746016896. [PubMed] [CrossRef] [Google Scholar]

52. Sanz ME, Viñas MR, Parma AE. Prevalence of bovine verotoxin-producing Escherichia coli in Argentina. Eur J Epidemiol. 1998;14:399–403. doi: 10.1023/A:1007427925583. [PubMed] [CrossRef] [Google Scholar]

53. Fernández D, Rodríguez EM, Arroyo GH, Padola NL, Parma AE. Seasonal variation of Shiga toxin-encoding genes (stx) and detection of E. coli O157 in dairy cattle from Argentina. J Appl Microbiol. 2009;106:1260–7. doi: 10.1111/j.1365-2672.2008.04088.x. [PubMed] [CrossRef] [Google Scholar]

54. Geue L, Selhorst T, Schnick C, Mintel B, Conraths FJ. Analysis of the clonal relationship of shiga toxin-producing Escherichia coli serogroup O165:H25 isolated from cattle. Appl Environ Microbiol. 2006;72:2254–9. doi: 10.1128/AEM.72.3.2254-2259.2006. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

55. Geue L, Klare S, Schnick C, Mintel B, Meyer K, Conraths FJ. Analysis of the clonal relationship of serotype O26:H11 enterohemorrhagic Escherichia coli isolates from cattle. Appl Environ Microbiol. 2009;75:6947–53. doi: 10.1128/AEM.00605-09. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

56. Geue L, Schares S, Mintel B, Conraths FJ, Muller E, Ehricht R. Rapid microarray-based genotyping of enterohemorrhagic Escherichia coli (EHEC) serotypes O156:H25/H-/Hnt isolates from cattle and clonal relationship analysis. Appl Environ Microbiol. 2010;76:5510–9. doi: 10.1128/AEM.00743-10. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

57. Midgley J, Fegan N, Desmarchelier P. Dynamics of Shiga toxin-producing Escherichia coli (STEC) in feedlot cattle. Lett Appl Microbiol. 1999;29:85–9. doi: 10.1046/j.1365-2672.1999.00585.x. [PubMed] [CrossRef] [Google Scholar]

58. Grauke LJ, Kudva IT, Yoon JW, Hunt CW, Williams CJ, Hovde CJ. Gastrointestinal tract location of Escherichia coli O157:H7 in ruminants. Appl Environ Microbiol. 2002;68:2269–77. doi: 10.1128/AEM.68.5.2269-2277.2002. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

59. Naylor SW, Low JC, Besser TE, Mahajan A, Gunn GJ, Pearce MC, et al. Lymphoid follicle-dense mucosa at the terminal rectum is the principal site of colonization of enterohemorrhagic Escherichia coli O157:H7 in the bovine host. Infect Immun. 2003;71:1505–12. doi: 10.1128/IAI.71.3.1505-1512.2003. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

60. Cobbold RN, Hancock DD, Rice DH, Berg J, Stilborn R, Hovde CJ, et al. Rectoanal junction colonization of feedlot cattle by Escherichia coli O157:H7 and its association with supershedders and excretion dynamics. Appl Environ Microbiol. 2007;73:1563–8. doi: 10.1128/AEM.01742-06. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

61. Low JC, McKendrick IJ, McKechnie C, Fenlon D, Naylor SW, Currie C, et al. Rectal carriage of enterohemorrhagic Escherichia coli O157 in slaughtered cattle. Appl Environ Microbiol. 2005;71:93–7. doi: 10.1128/AEM.71.1.93-97.2005. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

62. Baehler AA, Moxley RA. Escherichia coli O157:H7 induces attaching-effacing lesions in large intestinal mucosal explants from adult cattle. FEMS Microbiol Lett. 2000;185:239–42. doi: 10.1111/j.1574-6968.2000.tb09068.x. [PubMed] [CrossRef] [Google Scholar]

63. Phillips AD, Navabpour S, Hicks S, Dougan G, Wallis T, Frankel G. Enterohaemorrhagic Escherichia coli O157:H7 target Peyer’s patches in humans and cause attaching/effacing lesions in both human and bovine intestine. Gut. 2000;47:377–81. doi: 10.1136/gut.47.3.377. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

64. Tuttle J, Gomez T, Doyle MP, Wells JG, Zhao T, Tauxe RV, et al. Lessons from a large outbreak of Escherichia coli O157:H7 infections: insights into the infectious dose and method of widespread contamination of hamburger patties. Epidemiol Infect. 1999;122:185–92. doi: 10.1017/S0950268898001976. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

65. Pearson JS, Riedmaier P, Marchès O, Frankel G, Hartland EL. A type III effector protease NleC from enteropathogenic Escherichia coli targets NF-κB for degradation. Mol Microbiol. 2011;80:219–30. doi: 10.1111/j.1365-2958.2011.07568.x. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

66. Nadler C, Baruch K, Kobi S, Mills E, Haviv G, Farago M, et al. The type III secretion effector NleE inhibits NF-kappaB activation. PLoS Pathog. 2010;6:e1000743. doi: 10.1371/journal.ppat.1000743. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

67. Newton HJ, Pearson JS, Badea L, Kelly M, Lucas M, Holloway G, et al. The type III effectors NleE and NleB from enteropathogenic E. coli and OspZ from Shigella block nuclear translocation of NF-kappaB p65. PLoS Pathog. 2010;6:e1000898. doi: 10.1371/journal.ppat.1000898. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

68. Dahan S, Wiles S, La Ragione RM, Best A, Woodward MJ, Stevens MP, et al. EspJ is a prophage-carried type III effector protein of attaching and effacing pathogens that modulates infection dynamics. Infect Immun. 2005;73:679–86. doi: 10.1128/IAI.73.2.679-686.2005. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

69. Farfan MJ, Torres AG. Molecular mechanisms that mediate colonization of Shiga toxin-producing Escherichia coli strains. Infect Immun. 2012;80:903–13. doi: 10.1128/IAI.05907-11. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

70. Edwards RA, Puente JL. Fimbrial expression in enteric bacteria: a critical step in intestinal pathogenesis. Trends Microbiol. 1998;6:282–7. doi: 10.1016/S0966-842X(98)01288-8. [PubMed] [CrossRef] [Google Scholar]

71. Avelino F, Saldaña Z, Islam S, Monteiro-Neto V, Dall’Agnol M, Eslava CA, et al. The majority of enteroaggregative Escherichia coli strains produce the E. coli common pilus when adhering to cultured epithelial cells. Int J Med Microbiol. 2010;300:440–8. doi: 10.1016/j.ijmm.2010.02.002. [PubMed] [CrossRef] [Google Scholar]

72. Blackburn D, Husband A, Saldaña Z, Nada RA, Klena J, Qadri F, et al. Distribution of the Escherichia coli common pilus among diverse strains of human enterotoxigenic E. coli. J Clin Microbiol. 2009;47:1781–4. doi: 10.1128/JCM.00260-09. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

73. Rendón MA, Saldaña Z, Erdem AL, Monteiro-Neto V, Vázquez A, Kaper JB, et al. Commensal and pathogenic Escherichia coli use a common pilus adherence factor for epithelial cell colonization. Proc Natl Acad Sci U S A. 2007;104:10637–42. doi: 10.1073/pnas.0704104104. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

74. Mahajan A, Currie CG, Mackie S, Tree J, McAteer S, McKendrick I, et al. An investigation of the expression and adhesin function of H7 flagella in the interaction of Escherichia coli O157 : H7 with bovine intestinal epithelium. Cell Microbiol. 2009;11:121–37. doi: 10.1111/j.1462-5822.2008.01244.x. [PubMed] [CrossRef] [Google Scholar]

75. Dziva F, van Diemen PM, Stevens MP, Smith AJ, Wallis TS. Identification of Escherichia coli O157 : H7 genes influencing colonization of the bovine gastrointestinal tract using signature-tagged mutagenesis. Microbiology. 2004;150:3631–45. doi: 10.1099/mic.0.27448-0. [PubMed] [CrossRef] [Google Scholar]

76. van Diemen PM, Dziva F, Stevens MP, Wallis TS. Identification of enterohemorrhagic Escherichia coli O26:H- genes required for intestinal colonization in calves. Infect Immun. 2005;73:1735–43. doi: 10.1128/IAI.73.3.1735-1743.2005. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

77. Low AS, Dziva F, Torres AG, Martinez JL, Rosser T, Naylor S, et al. Cloning, expression, and characterization of fimbrial operon F9 from enterohemorrhagic Escherichia coli O157:H7. Infect Immun. 2006;74:2233–44. doi: 10.1128/IAI.74.4.2233-2244.2006. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

78. Easton DM, Totsika M, Allsopp LP, Phan MD, Idris A, Wurpel DJ, et al. Characterization of EhaJ, a new autotransporter protein from enterohemorrhagic and enteropathogenic Escherichia coli. Front Microbiol. 2011;2:120. doi: 10.3389/fmicb.2011.00120. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

79. Wells TJ, Sherlock O, Rivas L, Mahajan A, Beatson SA, Torpdahl M, et al. EhaA is a novel autotransporter protein of enterohemorrhagic Escherichia coli O157:H7 that contributes to adhesion and biofilm formation. Environ Microbiol. 2008;10:589–604. doi: 10.1111/j.1462-2920.2007.01479.x. [PubMed] [CrossRef] [Google Scholar]

80. Wells TJ, McNeilly TN, Totsika M, Mahajan A, Gally DL, Schembri MA. The Escherichia coli O157:H7 EhaB autotransporter protein binds to laminin and collagen I and induces a serum IgA response in O157:H7 challenged cattle. Environ Microbiol. 2009;11:1803–14. doi: 10.1111/j.1462-2920.2009.01905.x. [PubMed] [CrossRef] [Google Scholar]

81. Tarr PI, Bilge SS, Vary JC, Jr., Jelacic S, Habeeb RL, Ward TR, et al. Iha: a novel Escherichia coli O157:H7 adherence-conferring molecule encoded on a recently acquired chromosomal island of conserved structure. Infect Immun. 2000;68:1400–7. doi: 10.1128/IAI.68.3.1400-1407.2000. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

82. Dziva F, Mahajan A, Cameron P, Currie C, McKendrick IJ, Wallis TS, et al. EspP, a Type V-secreted serine protease of enterohaemorrhagic Escherichia coli O157:H7, influences intestinal colonization of calves and adherence to bovine primary intestinal epithelial cells. FEMS Microbiol Lett. 2007;271:258–64. doi: 10.1111/j.1574-6968.2007.00724.x. [PubMed] [CrossRef] [Google Scholar]

83. Nicholls L, Grant TH, Robins-Browne RM. Identification of a novel genetic locus that is required for in vitro adhesion of a clinical isolate of enterohaemorrhagic Escherichia coli to epithelial cells. Mol Microbiol. 2000;35:275–88. doi: 10.1046/j.1365-2958.2000.01690.x. [PubMed] [CrossRef] [Google Scholar]

84. Abu-Median AB, van Diemen PM, Dziva F, Vlisidou I, Wallis TS, Stevens MP. Functional analysis of lymphostatin homologues in enterohaemorrhagic Escherichia coli. FEMS Microbiol Lett. 2006;258:43–9. doi: 10.1111/j.1574-6968.2006.00198.x. [PubMed] [CrossRef] [Google Scholar]

85. Klapproth JM, Scaletsky IC, McNamara BP, Lai LC, Malstrom C, James SP, et al. A large toxin from pathogenic Escherichia coli strains that inhibits lymphocyte activation. Infect Immun. 2000;68:2148–55. doi: 10.1128/IAI.68.4.2148-2155.2000. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

86. Stevens MP, Roe AJ, Vlisidou I, van Diemen PM, La Ragione RM, Best A, et al. Mutation of toxB and a truncated version of the efa-1 gene in Escherichia coli O157:H7 influences the expression and secretion of locus of enterocyte effacement-encoded proteins but not intestinal colonization in calves or sheep. Infect Immun. 2004;72:5402–11. doi: 10.1128/IAI.72.9.5402-5411.2004. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

87. Tatsuno I, Horie M, Abe H, Miki T, Makino K, Shinagawa H, et al. toxB gene on pO157 of enterohemorrhagic Escherichia coli O157:H7 is required for full epithelial cell adherence phenotype. Infect Immun. 2001;69:6660–9. doi: 10.1128/IAI.69.11.6660-6669.2001. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

88. Torres AG, Kanack KJ, Tutt CB, Popov V, Kaper JB. Characterization of the second long polar (LP) fimbriae of Escherichia coli O157:H7 and distribution of LP fimbriae in other pathogenic E. coli strains. FEMS Microbiol Lett. 2004;238:333–44. [PubMed] [Google Scholar]

89. Hancock DD, Besser TE, Rice DH. Ecology of Escherichia coli O157:H7 in cattle and impact of management practices. In: Kaper JB, O’Brien AD, eds. Escherichia coli O157:H7 and other Shiga Toxinproducing Escherichia coli. Washington, DC: American Society for Microbiology, 1998:85-91. [Google Scholar]

90. Besser TE, Richards BL, Rice DH, Hancock DD. Escherichia coli O157:H7 infection of calves: infectious dose and direct contact transmission. Epidemiol Infect. 2001;127:555–60. doi: 10.1017/S095026880100615X. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

91. Callaway TR, Anderson RC, Edrington TS, Genovese KJ, Bischoff KM, Poole TL, et al. What are we doing about Escherichia coli O157:H7 in cattle? J Anim Sci. 2004;82 E-Suppl(E. Suppl.):E93–9. [PubMed] [Google Scholar]

92. Callaway TR, Anderson RC, Genovese KJ, Poole TL, Anderson TJ, Byrd JA, et al. Sodium chlorate supplementation reduces E. coli O157:H7 populations in cattle. J Anim Sci. 2002;80:1683–9. [PubMed] [Google Scholar]

93. Potter AA, Klashinsky S, Li Y, Frey E, Townsend H, Rogan D, et al. Decreased shedding of Escherichia coli O157:H7 by cattle following vaccination with type III secreted proteins. Vaccine. 2004;22:362–9. doi: 10.1016/j.vaccine.2003.08.007. [PubMed] [CrossRef] [Google Scholar]

94. Center for Veterinary Medicine. “A proposed framework for evaluating and assuring the human safety of the microbial effects of antimicrobial new animal drugs intended for use in food-producing 6 animals,” FDA Center for Veterinary Medicine, http//www.fda.gov/cvm/index/vmac/antimi18.html, 2001. Accessed 20 April 2003.

95. Zhao T, Doyle MP, Harmon BG, Brown CA, Mueller POE, Parks AH. Reduction of carriage of enterohemorrhagic Escherichia coli O157:H7 in cattle by inoculation with probiotic bacteria. J Clin Microbiol. 1998;36:641–7. [PMC free article] [PubMed] [Google Scholar]

96. Brashears MM, Galyean ML, Loneragan GH, Mann JE, Killinger-Mann K. Prevalence of Escherichia coli O157:H7 and performance by beef feedlot cattle given Lactobacillus direct-fed microbials. J Food Prot. 2003;66:748–54. [PubMed] [Google Scholar]

97. Etcheverría AI, Arroyo GH, Perdigón G, Parma AE. Escherichia coli with anti-O157:H7 activity isolated from bovine colon. J Appl Microbiol. 2006;100:384–9. doi: 10.1111/j.1365-2672.2005.02779.x. [PubMed] [CrossRef] [Google Scholar]

98. Etcheverría AI, Arroyo GH, Alzola R, Parma AE. Reduction of adherence of E. coli O157:H7 to HeP-2 cells and to bovine large intestinal mucosal explants by colicinogenic-E. coli. ISRN Microbiol . 2011;2011:e697020. [PMC free article] [PubMed] [Google Scholar]


Page 2

Table 1. Serotypes shared between cattle and foods, between cattle and the environment and among cattle, foods, and environment of strains collection from Argentina

SerotypePercentage of strains (%)Virulence profiles
(n = 447)CattleFoodsEnvironment
O178:H19139550stx2
stx2 saa ehxA
stx1 stx2 saa ehxA
O130:H1199370stx1 stx2 saa ehxA
stx1 saa ehxA
O113:H21886140stx2 saa ehxA
stx1 stx2 saa ehxA
stx1 eae ehxA
stx2
O26:H1159109stx1 eae ehxA
stx2 eae ehxA
O91:H2159550stx2 saa ehxA
O171:H2586140stx2
O117:H7350500stx2
O145:H-39307stx1 eae ehxA
stx2 eae ehxA
stx1 eae
stx2 eae
O157:H739370stx2 eae ehxA
O8:H192454510stx1 stx2 ehxA
stx1 ehxA
stx2