What should one surmise if a blood flow found on an object or body does not appear consistent with the direction of gravity?

1. Abboud FM, Thames MD. Interaction of cardiovascular reflexes in circulatory control. In: Shepherd JT, Abboud FM, editors. Handbook of Physiology Section 2: Circulation Volume III: Peripheral Circulation and Organ Blood Flow, Part 2. American Physiological Society; Bethesa, MD: 1983. pp. 497–555. [Google Scholar]

2. Abe C, Kawada T, Sugimachi M, Morita H. Interaction between vestibulo-cardiovascular reflex and arterial baroreflex during postural change in rats. J Appl Physiol. 2011;111:1614–1621. [PubMed] [Google Scholar]

3. Abe C, Tanaka K, Awazu C, Chen H, Morita H. Plastic alteration of vestibulo-cardiovascular reflex induced by 2 weeks of 3-G load in conscious rats. Exp Brain Res. 2007;181:639–646. [PubMed] [Google Scholar]

4. Abe C, Tanaka K, Awazu C, Morita H. Strong galvanic vestibular stimulation obscures arterial pressure response to gravitational change in conscious rats. J Appl Physiol. 2008;104:34–40. [PubMed] [Google Scholar]

5. Abe C, Tanaka K, Awazu C, Morita H. The vestibular system is integral in regulating plastic alterations in the pressor response to free drop mediated by the nonvestibular system. Neurosci Lett. 2008;445:149–152. [PubMed] [Google Scholar]

6. Agarwal SK, Calaresu FR. Supramedullary inputs to cardiovascular neurons of rostral ventrolateral medulla in rats. Am J Physiol. 1993;265:R111–R116. [PubMed] [Google Scholar]

7. Anderson JH, Blanks RHI, Precht W. Response characteristics of semicircular canal and otolith systems in the cat. I. Dynamic responses of primary vestibular fibers. Exp Brain Res. 1978;32:491–507. [PubMed] [Google Scholar]

8. Andrezik JA, Dormer KJ, Foreman RD, Person RJ. Fastigial nucleus projections to the brain stem in beagles: pathways for autonomic regulation. Neurosci. 1984;11:497–507. [PubMed] [Google Scholar]

9. Angaut P, Brodal A. The projection of the “vestibulocerebellum” onto the vestibular nuclei in the cat. Arch Ital Biol. 1967;105:441–479. [PubMed] [Google Scholar]

10. Aoki M, Sakaida Y, Hayashi H, Yamada N, Mizuta K, Ito Y. The orthostatic dysregulation of blood pressure in dizzy patients. J Vestib Res. 2008;18:223–229. [PubMed] [Google Scholar]

11. Aoki M, Sakaida Y, Tanaka K, Mizuta K, Ito Y. Evidence for vestibular dysfunction in orthostatic hypotension. Exp Brain Res. 2012;217:251–259. [PubMed] [Google Scholar]

12. Arndt JO, Brambring P, Hindorf K, Rohnelt M. The afferent discharge pattern of atrial mechanoreceptors in the cat during sinusoidal stretch of atrial strips in situ. J Physiol. 1974;240:33–52. [PMC free article] [PubMed] [Google Scholar]

13. Arshian MS, Puterbaugh SR, Miller DJ, Catanzaro MF, Hobson CE, McCall AA, Yates BJ. Effects of visceral inputs on the processing of labyrinthine signals by the inferior and caudal medial vestibular nuclei: ramifications for the production of motion sickness. Exp Brain Res. 2013;228:353–363. [PMC free article] [PubMed] [Google Scholar]

14. Bahr R, Bartel B, Blumberg H, Janig W. Functional characterization of preganglionic neurons projecting in the lumbar splanchnic nerves: vasoconstrictor neurons. J Autonom Nerv Syst. 1986;15:131–140. [PubMed] [Google Scholar]

15. Bahr R, Blumberg H, Janig W. Do dichotomizing afferent fibers exist which supply visceral organs as well as somatic structures? A contribution to the problem or referred pain. Neurosci Lett. 1981;24:25–28. [PubMed] [Google Scholar]

16. Balaban CD. Neural substrates linking balance control and anxiety. Physiol Behav. 2002;77:469–475. [PubMed] [Google Scholar]

17. Balaban CD, Beryozkin G. Vestibular nucleus projections to nucleus tractus solitarius and the dorsal motor nucleus of the vagus nerve: potential substrates for vestibulo-autonomic interactions. Exp Brain Res. 1994;98:200–212. [PubMed] [Google Scholar]

18. Balaban CD, Jacob RG. Background and history of the interface between anxiety and vertigo. J Anxiety Disord. 2001;15:27–51. [PubMed] [Google Scholar]

19. Balaban CD, Jacob RG, Furman JM. Neurologic bases for comorbidity of balance disorders, anxiety disorders and migraine: neurotherapeutic implications. Expert Rev Neurotherapeutics. 2011;11:379–394. [PMC free article] [PubMed] [Google Scholar]

20. Balaban CD, Porter JD. Neuroanatomic substrates for vestibulo-autonomic interactions. J Vestib Res. 1998;8:7–16. [PubMed] [Google Scholar]

21. Balaban CD, Thayer JF. Neurological bases for balance-anxiety links. J Anxiety Disord. 2001;15:53–79. [PubMed] [Google Scholar]

22. Balaban CD, Yates BJ. Vestibulo-autonomic interactions: a teleologic perspective. In: Highstein SM, Fay RR, Popper AN, editors. Anatomy and Physiology of the Central and Peripheral Vestibular System. Springer; Heidelberg: 2004. pp. 286–342. [Google Scholar]

23. Barmack NH. Central vestibular system: vestibular nuclei and posterior cerebellum. Brain Res Bull. 2003;60:511–541. [PubMed] [Google Scholar]

24. Barman SM, Gebber GL. The posterior vermis of the cerebellum selectively inhibits 10-Hz sympathetic nerve discharge in anesthetized cats. Am J Physiol Reg Integr Comp Physiol. 2009;297:R210–217. [PMC free article] [PubMed] [Google Scholar]

25. Barman SM, Gebber GL. Rostral ventrolateral medullary and caudal medullary raphe neurons with activity correlated to the 10-Hz rhythm in sympathetic nerve discharge. J Neurophysiol. 1992;68:1535–1547. [PubMed] [Google Scholar]

26. Barman SM, Gebber GL, Calaresu FR. Differential control of sympathetic nerve discharge by the brain stem. Am J Physiol. 1984;247:R513–519. [PubMed] [Google Scholar]

27. Barman SM, Sugiyama Y, Suzuki T, Cotter LA, DeStefino VJ, Reighard DA, Cass SP, Yates BJ. Rhythmic activity of neurons in the rostral ventrolateral medulla of conscious cats: effect of removal of vestibular inputs. Am J Physiol Regul Integr Comp Physiol. 2011;301:R937–946. [PMC free article] [PubMed] [Google Scholar]

28. Beart PM, Summers RJ, Stephenson JA, Christie MJ. Excitatory amino acid projections to the nucleus of the solitary tract in the rat: a retrograde transport study utilizing D-[3H]aspartate and [3H]GABA. J Auton Nerv Syst. 1994;50:109–122. [PubMed] [Google Scholar]

29. Bent LR, Bolton PS. Macefield VG. Modulation of muscle sympathetic bursts by sinusoidal galvanic vestibular stimulation in human subjects. Exp Brain Res. 2006;174:701–711. [PubMed] [Google Scholar]

30. Bent LR, Bolton PS, Macefield VG. Vestibular inputs do not influence the fusimotor system in relaxed muscles of the human leg. Exp Brain Res. 2007;180:97–103. [PubMed] [Google Scholar]

31. Bent LR, Sander M, Bolton PS, Macefield VG. The vestibular system does not modulate fusimotor drive to muscle spindles in contracting leg muscles of seated subjects. Exp Brain Res. 2013;227:175–183. [PubMed] [Google Scholar]

32. Berdeaux A, Duranteau J, Pussard E, Edouard A, Giudicelli JF. Baroreflex control of regional vascular resistances during simulated orthostatism. Kidney Int Suppl. 1992;37:S29–33. [PubMed] [Google Scholar]

33. Bishop VS, Malliani A, Thoren P. Cardiac mechanoreceptors. In: Shepherd JT, Abboud FM, editors. Handbook of Physiology Section 2: Circulation Volume III: Peripheral Circulation and Organ Blood Flow, Part 2. American Physiological Society; Bethesa, MD: 1983. pp. 497–555. [Google Scholar]

34. Bles W, Bos JE, Kruit H. Motion sickness. Curr Opin Neurol. 2000;13:19–25. [PubMed] [Google Scholar]

35. Blomqvist C, Stone H. Cardiovascular adjustments to gravitational stress. In: Shepherd JT, Abboud FM, editors. Handbook of Physiology The Cardiovascular System Sect 2. III. American Physiological Society; Bethesda: 1983. pp. 1025–1063. [Google Scholar]

36. Boczek-Funcke A, Dembowsky K, Häbler H-J, Jänig W, McAllen RM, Michaelis M. Classification of preganglionic neurones projecting into the cat cervical sympathetic trunk. J Physiol. 1992;453:319–339. [PMC free article] [PubMed] [Google Scholar]

37. Bolton PS, Kerman IA, Woodring SF, Yates BJ. Influences of neck afferents on sympathetic and respiratory nerve activity. Brain Res Bull. 1998;47:413–419. [PubMed] [Google Scholar]

38. Bolton PS, Wardman DL, Macefield VG. Absence of short-term vestibular modulation of muscle sympathetic outflow, assessed by brief galvanic vestibular stimulation in awake human subjects. Exp Brain Res. 2004;154:39–43. [PubMed] [Google Scholar]

39. Bourassa EA, Sved AF, Speth RC. Angiotensin modulation of rostral ventrolateral medulla (RVLM) in cardiovascular regulation. Molec Cell Endocrinol. 2009;302:167–175. [PMC free article] [PubMed] [Google Scholar]

40. Boyle R, Pompeiano O. Convergence and interaction of neck and macular vestibular inputs on vestibulospinal neurons. J Neurophysiol. 1981;45:852–868. [PubMed] [Google Scholar]

41. Bradley DJ, Ghelarducci B, La Noce A, Paton JF, Spyer KM, Withington-Wray DJ. An electrophysiological and anatomical study of afferents reaching the cerebellar uvula in the rabbit. Exp Physiol. 1990;75:163–177. [PubMed] [Google Scholar]

42. Bradley DJ, Ghelarducci B, Paton JF, Spyer KM. The cardiovascular responses elicited from the posterior cerebellar cortex in the anaesthetized and decerebrate rabbit. J Physiol. 1987;383:537–550. [PMC free article] [PubMed] [Google Scholar]

43. Bradley DJ, Ghelarducci B, Spyer KM. The role of the posterior cerebellar vermis in cardiovascular control. Neurosci Res. 1991;12:45–56. [PubMed] [Google Scholar]

44. Bradley DJ, Pascoe JP, Paton JF, Spyer KM. Cardiovascular and respiratory responses evoked from the posterior cerebellar cortex and fastigial nucleus in the cat. J Physiol. 1987;393:107–121. [PMC free article] [PubMed] [Google Scholar]

45. Bradley DJ, Paton JF, Spyer KM. Cardiovascular responses evoked from the fastigial region of the cerebellum in anaesthetized and decerebrate rabbits. J Physiol. 1987;392:475–491. [PMC free article] [PubMed] [Google Scholar]

46. Brodal A. The olivocerebellar projection in the cat as studied with the method of retrograde axonal transport of horseradish peroxidase. II. The projection to the uvula. J Comp Neurol. 1976;166:417–426. [PubMed] [Google Scholar]

47. Brooks JX, Cullen KE. Multimodal integration in rostral fastigial nucleus provides an estimate of body movement. J Neurosci. 2009;29:10499–10511. [PMC free article] [PubMed] [Google Scholar]

48. Broussard DM, Titley HK, Antflick J, Hampson DR. Motor learning in the VOR: the cerebellar component. Exp Brain Res. 2011;210:451–463. [PubMed] [Google Scholar]

49. Burke DS, Sundölf G, Wallin BG. Postural effects on muscle nerve sympathetic activity in man. J Physiol. 1977;272:399–414. [PMC free article] [PubMed] [Google Scholar]

50. Buttner U, Glasauer S, Glonti L, Kleine JF, Siebold C. Otolith processing in the deep cerebellar nuclei. Ann N Y Acad Sci. 1999;871:81–93. [PubMed] [Google Scholar]

51. Cai YL, Ma WL, Li M, Guo JS, Li YQ, Wang LG, Wang WZ. Glutamatergic vestibular neurons express Fos after vestibular stimulation and project to the NTS and the PBN in rats. Neurosci Lett. 2007;417:132–137. [PubMed] [Google Scholar]

52. Cannon WB. Bodily Changes in Pain, Hunger, Fear and Rage: An Account of Recent Researches into the Function of Emotional Excitement. Harper & Row; New York: 1963. [Google Scholar]

53. Cannon WB. The Wisdom of the Body. W. W. Norton; New York: 1963. [Google Scholar]

54. Cano G, Card JP, Sved AF. Dual viral transneuronal tracing of central autonomic circuits involved in the innervation of the two kidneys in rat. J Comp Neurol. 2004;471:462–481. [PubMed] [Google Scholar]

55. Carleton SC, Carpenter MB. Afferent and efferent connections of the medial, inferior and lateral vestibular nuclei in the cat and monkey. Brain Res. 1983;278:29–51. [PubMed] [Google Scholar]

56. Carli G, Diete-Spiff K, Pompeiano O. Responses of the muscle spindles and of the extrafusal fibres in an externsor muscle to stimulation of the lateral vestibular nucleus in the cat. Arch Ital Biol. 1967;105:209–242. [PubMed] [Google Scholar]

57. Carlino L, Weber SA, Gowen MF, Yates BJ. Selective innervation of upper and loer thoracic spinal segments by medullary raphe neurons. FASEB J. 2012;26:1091.2. [Google Scholar]

58. Carpenter MB, Bard DS, Alling FA. Anatomical connections between the fastigial nuclei, the labyrinth and the vestibular nuclei in the cat. J Comp Neurol. 1959;111:1–26. [Google Scholar]

59. Carter JR, Kupiers NT, Ray CA. Neurovascular responses to mental stress. J Physiol. 2005;564:321–327. [PMC free article] [PubMed] [Google Scholar]

60. Cathers I, Day BL, Fitzpatrick RC. Otolith and canal reflexes in human standing. J Physiol. 2005;563:229–234. [PMC free article] [PubMed] [Google Scholar]

61. Chalmers J, Arnolda L, Llewellynsmith I, Minson J, Pilowsky P, Suzuki S. Central neurons and neurotransmitters in the control of blood pressure. Clin Exp Pharmacol Physiol. 1994;21:819–829. [PubMed] [Google Scholar]

62. Cobbold AF, Megirian D, Sherrey JH. Vestibular evoked activity in autonomic motor outflows. Arch Ital Biol. 1968;106:113–123. [PubMed] [Google Scholar]

63. Cohen B, Martinelli GP, Raphan T, Schaffner A, Xiang Y, Holstein GR, Yakushin SB. The vasovagal response of the rat: its relation to the vestibulosympathetic reflex and to Mayer waves. FASEB J. 2013;27:2564–2572. [PMC free article] [PubMed] [Google Scholar]

64. Cohen MI, Gootman PM. Periodicities in efferent discharge of splanchnic nerve of the cat. Am J Physiol. 1970;218:1092–1101. [PubMed] [Google Scholar]

65. Colebatch J, Halmagyi G. Vestibular evoked potentials in human neck muscles before and after unilateral vestibular deafferentation. Neurology. 1992;42:1635–1636. [PubMed] [Google Scholar]

66. Colebatch J, Halmagyi G, Skuse N. Myogenic potentials generated by a click-evoked vestibulocollic reflex. J Neurol Neurosurg Psychiatry. 1994;57:190–197. [PMC free article] [PubMed] [Google Scholar]

67. Convertino VA, Ryan KL, Rickards CA, Glorsky SL, Idris AH, Yannopoulos D, Metzger A, Lurie KG. Optimizing the respiratory pump: harnessing inspiratory resistance to treat systemic hypotension. Respir Care. 2011;56:846–857. [PMC free article] [PubMed] [Google Scholar]

68. Costa F, Lavin P, Robertson D, Biaggioni I. Effect of neurovestibular stimulation on autonomic regulation. Clin Autonom Res. 1995;5:289–293. [PubMed] [Google Scholar]

69. Courville J, Faraco-Cantin F. Topography of the olivo-cerebellar projection. An experimental study in the cat with an autoradiographic tracing method. In: Courville J, Montigny Cd, Lamarre Y, editors. The Inferior Olivary Nucleus-Anatomy and Physiology. Raven; New York: 1980. [Google Scholar]

70. Crandall CG, Gonzalez-Alonso J. Cardiovascular function in the heat-stressed human. Acta Physiol (Oxf) 2010;199:407–423. [PMC free article] [PubMed] [Google Scholar]

71. Cui J, Iwase S, Mano T, Katayama N, Mori S. Muscle sympathetic outflow during horizontal linear acceleration in humans. Am J Physiol Regul Integr Comp Physiol. 2001;281:R625–634. [PubMed] [Google Scholar]

72. Cui J, Iwase S, Mano T, Katayama N, Mori S. Sympathetic nerve response to muscle during anteroposterior acceleration in humans. Environ Med. 1998;42:71–75. [PubMed] [Google Scholar]

73. Cui J, Mukai C, Iwase S, Sawasaki N, Kitazawa H, Mano T, Sugiyama Y, Wada Y. Response to vestibular stimulation of sympathetic outflow to muscle in humans. J Autonom Nerv Syst. 1997;66:154–162. [PubMed] [Google Scholar]

74. Cullen KE, Brooks JX, Jamali M, Carriot J, Massot C. Internal models of self-motion: computations that suppress vestibular reafference in early vestibular processing. Exp Brain Res. 2011;210:377–388. [PubMed] [Google Scholar]

75. Dampney RA. Brain stem mechanisms in the control of arterial pressure. Clin Exp Hypertens. 1981;3:379–391. [PubMed] [Google Scholar]

76. Dampney RA. The subretrofacial nucleus: its pivotal role in cardiovascular regulation. News in Physiological Sciences. 1990;5:63–67. [Google Scholar]

77. Dampney RA. The subretrofacial vasomotor nucleus - anatomical, chemical and pharmacological properties and role in cardiovascular regulation. Prog Neurobiol. 1994;42:197–227. [PubMed] [Google Scholar]

78. Dampney RA, Goodchild AK, McAllen RM. Vasomotor control by subretrofacial neurones in the rostral ventrolateral medulla. Can J Physiol Pharmacol. 1987;65:1572–1579. [PubMed] [Google Scholar]

79. Dampney RA, Horiuchi J, Tagawa T, Fontes MA, Potts PD, Polson JW. Medullary and supramedullary mechanisms regulating sympathetic vasomotor tone. Acta Physiol Scand. 2003;177:209–218. [PubMed] [Google Scholar]

80. Dampney RAL, McAllen RM. Differential control of sympathetic fibres supplying hindlimb skin and muscle by subretrofacial neurones in the cat. J Physiol. 1988;395:41–56. [PMC free article] [PubMed] [Google Scholar]

81. Dean C, Seagard JL, Hopp FA, Kampine JP. Differential control of sympathetic activity to kidney and skeletal muscle by ventral medullary neurons. J Autonom Nerv Syst. 1992;37:1–10. [PubMed] [Google Scholar]

82. Del Bo A, Sved AF, Reis DJ. Fastigial nucleus stimulation and concurrent activation of cardiovascular receptors; differentiate effects on arterial pressure, heart rate and vasopressin release. J Hypertension - Supplement. 1984;2:S49–51. [PubMed] [Google Scholar]

83. Del Bo A, Sved AF, Reis DJ. Inhibitory influences from arterial baroreceptors on vasopressin release elicited by fastigial stimulation in rats. Circ Res. 1984;54:248–253. [PubMed] [Google Scholar]

84. Destefino VJ, Reighard DA, Sugiyama Y, Suzuki T, Cotter LA, Larson MG, Gandhi NJ, Barman SM, Yates BJ. Responses of neurons in the rostral ventrolateral medulla to whole body rotations: comparisons in decerebrate and conscious cats. J Appl Physiol. 2011;110:1699–1707. [PMC free article] [PubMed] [Google Scholar]

85. Dickman JD, Angelaki DE. Vestibular convergence patterns in vestibular nuclei neurons of alert primates. J Neurophysiol. 2002;88:3518–3533. [PubMed] [Google Scholar]

86. Diedrich A, Porta A, Barbic F, Brychta RJ, Bonizzi P, Diedrich L, Cerutti S, Robertson D, Furlan R. Lateralization of expression of neural sympathetic activity to the vessels and effects of carotid baroreceptor stimulation. Am J Physiol Heart Circ Physiol. 2009;296:H1758–1765. [PMC free article] [PubMed] [Google Scholar]

87. Dieterich M. Central vestibular disorders. J Neurol. 2007;254:559–568. [PubMed] [Google Scholar]

88. Doba N, Reis DJ. Changes in regional blood flow and cardiodynamics evoked by electrical stimulation of the fastigial nucleus in the cat and their similarity to orthostatic reflexes. J Physiol. 1972;227:729–747. [PMC free article] [PubMed] [Google Scholar]

89. Doba N, Reis DJ. Role of the cerebellum and vestibular apparatus in regulation of orthostatic reflexes in the cat. Circ Res. 1974;34:9–18. [PubMed] [Google Scholar]

90. Dulac S, Raymond JL, Sejnowski TJ, Lisberger SG. Learning and memory in the vestibulo-ocular reflex. Annu Rev Neurosci. 1995;18:409–441. [PubMed] [Google Scholar]

91. Dunne F, Barry D, Ferriss J, Grealy G, Murphy D. Changes in blood pressure during the normal menstrual cycle. Clin Sci (Lond) 1991;81:515–518. [PubMed] [Google Scholar]

92. Dyckman DJ, Monahan KD, Ray CA. Effect of baroreflex loading on the responsiveness of the vestibulosympathetic reflex in humans. J Appl Physiol. 2007;103:1001–1006. [PubMed] [Google Scholar]

93. El Sayed K, Dawood T, Hammam E, Macefield VG. Evidence from bilateral recordings of sympathetic nerve activity for lateralisation of vestibular contributions to cardiovascular control. Exp Brain Res. 2012;221:427–436. [PubMed] [Google Scholar]

94. Endo K, Thomson DB, Wilson VJ, Yamaguchi T, Yates BJ. Vertical vestibular input to and projections from the caudal parts of the vestibular nuclei of the decerebrate cat. J Neurophysiol. 1995;74:428–436. [PubMed] [Google Scholar]

95. Essandoh LK, Duprez DA, Shepherd JT. Reflex constriction of human resistance vessels to head-down neck flexion. Am J Physiol. 1988;64:767–770. [PubMed] [Google Scholar]

96. Ezure K, Wilson VJ. Interaction of tonic neck and vestibular reflexes in the forelimb of the decerebrate cat. Exp Brain Res. 1984;54:289–292. [PubMed] [Google Scholar]

97. Fadel PJ, Raven PB. Human investigations into the arterial and cardiopulmonary baroreflexes during exercise. Exp Physiol. 2012;97:39–50. [PMC free article] [PubMed] [Google Scholar]

98. Fatouleh R, Macefield VG. Cardiorespiratory coupling of sympathetic outflow in humans: a comparison of respiratory and cardiac modulation of sympathetic nerve activity to skin and muscle. Exp Physiol. 2013;98:1327–1336. [PubMed] [Google Scholar]

99. Favilla M, Ghelarducci B, Hill CD, Spyer KM. Vestibular inputs to the fastigial nucleus; evidence of convergence of macular and ampullar inputs. Pflugers Arch. 1980;384:193–201. [PubMed] [Google Scholar]

100. Felder RB, Mifflin SW. Modulation of carotid sinus afferent input to nucleus tractus solitarius by parabrachial nucleus stimulation. Circ Res. 1988;63:35–49. [PubMed] [Google Scholar]

101. Fernandez C, Goldberg JM. Physiology of peripheral neurons innervating otolith organs of the squirrel monkey. III. Response dynamics. J Neurophysiol. 1976;39:996–1008. [PubMed] [Google Scholar]

102. Fernandez C, Goldberg JM. Physiology of peripheral neurons innervating semicircular canals of the squirrel monkey. II. Response to sinusoidal stimulation and dynamics of peripheral vestibular system. J Neurophysiol. 1971;34:661–675. [PubMed] [Google Scholar]

103. Ferrari AU. Modifications of the cardiovascular system with aging. Am J Geriatr Cardiol. 2002;11:30–33. [PubMed] [Google Scholar]

104. Fitzpatrick RC, Butler JE, Day BL. Resolving head rotation for human bipedalism. Curr Biol. 2006;16:1509–1514. [PubMed] [Google Scholar]

105. Fitzpatrick RC, Day BL. Probing the human vestibular system with galvanic stimulation. J Appl Physiol. 2004;96:2301–2316. [PubMed] [Google Scholar]

106. Fu Q, Iwase S, Niimi Y, Kamiya A, Michikami D, Mano T. Effects of aging on leg vein filling and venous compliance during low levels of lower body negative pressure in humans. Environ Med. 1999;43:142–145. [PubMed] [Google Scholar]

107. Fu Q, Witkowski S, Levine BD. Vasoconstrictor reserve and sympathetic neural control of orthostasis. Circulation. 2004;110:2931–2937. [PubMed] [Google Scholar]

108. Furlan R, Barbic F, Casella F, Severgnini G, Zenoni L, Mercieri A, Mangili R, Costantino G, Porta A. Neural autonomic control in orthostatic intolerance. Respir Physiol Neurobiol. 2009;169(Suppl 1):S17–20. [PubMed] [Google Scholar]

109. Furman JM, Balaban CD, Jacob RG, Marcus DA. Migraine-anxiety related dizziness (MARD): a new disorder? J Neurol, Neurosurg, Psych. 2005;76:1–8. [PMC free article] [PubMed] [Google Scholar]

110. Gandevia SC, Killian K, McKenzie DK, Crawford M, Allen GM, Gorman RB, Hales JP. Respiratory sensations, cardiovascular control, kinaesthesia and transcranial stimulation during paralysis in humans. J Physiol (Lond) 1993;470:85–107. [PMC free article] [PubMed] [Google Scholar]

111. Gardner EP, Fuchs AF. Single-unit responses to natural vestibular stimuli and eye movements in deep cerebellar nuclei of the alert rhesus monkey. J Neurophysiol. 1975;38:627–649. [PubMed] [Google Scholar]

112. Gebber GL. Basis for phase relations between baroreceptor and sympathetic nervous discharge. Am J Physiol. 1976;230:263–270. [PubMed] [Google Scholar]

113. Gebber GL, Barman SM. Rhythmogenesis in the sympathetic nervous system. Federation Proc. 1980;39:2526–2530. [PubMed] [Google Scholar]

114. Gebber GL, Barman SM, Kocsis B. Coherence of medullary unit activity and sympathetic nerve discharge. Am J Physiol. 1990;259:R561–571. [PubMed] [Google Scholar]

115. Ghelarducci B. Responses of the cerebellar fastigial neurones to tilt. Pflugers Arch. 1973;344:195–206. [PubMed] [Google Scholar]

116. Gilbey MP, Spyer KM. Essential organization of the sympathetic nervous system. Bailliere Clin Endocrinol Met. 1993;7:259–278. [PubMed] [Google Scholar]

117. Goldberg JM, Fernandez C. Vestibular mechanisms. Annu Rev Physiol. 1975;37:129–162. [PubMed] [Google Scholar]

118. Goldberg JM, Fernández C. The vestibular system. In: Darian-Smith I, editor. Handbook of Physiology Section I: The Nervous System Volume III, Sensory Processes, Part 2. American Physiological Society; Bethesda, MD: 1984. pp. 977–1022. [Google Scholar]

119. Goldberg JM, Smith CE, Fernandez C. Relation between discharge regularity and responses to externally applied galvanic currents in vestibular nerve afferents of the squirrel monkey. J Neurophysiol. 1984;51:1236–1256. [PubMed] [Google Scholar]

120. Goldberg JM, Wilson VJ, Cullen KE, Angelaki DE, Broussard DM, Buttner-Ennever J, Fukushima K, Minor LB. The Vestibular System: A Sixth Sense. Oxford University Press; 2012. p. 560. [Google Scholar]

121. Golding JF, Gresty MA. Motion sickness. Curr Opin Neurol. 2005;18:29–34. [PubMed] [Google Scholar]

122. Gootman PM, Cohen MI. Efferent splanchnic activity and systemic arterial pressure. Am J Physiol. 1970;219:897–903. [PubMed] [Google Scholar]

123. Gootman PM, Cohen MI. Periodic modulation (cardiac and respiratory) of spontaneous and evoked sympathetic discharge. Acta Physiologica Polonica. 1973;24:97–109. [PubMed] [Google Scholar]

124. Gotoh TM, Fujiki N, Matsuda T, Gao S, Morita H. Roles of baroreflex and vestibulosympathetic reflex in controlling arterial blood pressure during gravitational stress in conscious rats. Am J Physiol Regul Integr Comp Physiol. 2004;286:R25–30. [PubMed] [Google Scholar]

125. Gowen MF, Ogburn SW, Suzuki T, Sugiyama Y, Cotter LA, Yates BJ. Collateralization of projections from the rostral ventrolateral medulla to the rostral and caudal thoracic spinal cord in felines. Exp Brain Res. 2012;220:121–133. [PMC free article] [PubMed] [Google Scholar]

126. Granata AR, Ruggiero DA, Park DH, Joh TH, Reis DJ. Brain stem area with C1 epinephrine neurons mediates baroreflex vasodepressor responses. Am J Physiol. 1985;248:H547–H567. [PubMed] [Google Scholar]

127. Gresty M, Bronstein A, Brandt T, Dieterich M. Neurology of otolith function. Peripheral and central disorders. Brain. 1992;115:647–673. [PubMed] [Google Scholar]

128. Grewal T, Dawood T, Hammam E, Kwok K, Macefield VG. Low-frequency physiological activation of the vestibular utricle causes biphasic modulation of skin sympathetic nerve activity in humans. Exp Brain Res. 2012;220:101–108. [PubMed] [Google Scholar]

129. Grewal T, James C, Macefield VG. Frequency-dependent modulation of muscle sympathetic nerve activity by sinusoidal galvanic vestibular stimulation in human subjects. Exp Brain Res. 2009;197:379–386. [PubMed] [Google Scholar]

130. Groenewegen HJ, Voogd J. The parasagittal zonation within the olivocerebellar projection. I. Climbing fiber distribution in the vermis of cat cerebellum. J Comp Neurol. 1977;174:417–488. [PubMed] [Google Scholar]

131. Hamilton RB, Ellenberger H, Liskowsky D, Schneiderman N. Parabrachial area as mediator of bradycardia in rabbits. J Auton Nerv Syst. 1981;4:261–281. [PubMed] [Google Scholar]

132. Hammam E, Dawood T, Macefield VG. Low-frequency galvanic vestibular stimulation evokes two peaks of modulation in skin sympathetic nerve activity. Exp Brain Res. 2012;219:441–446. [PubMed] [Google Scholar]

133. Hammam E, James C, Dawood T, Macefield VG. Low-frequency sinusoidal galvanic stimulation of the left and right vestibular nerves reveals two peaks of modulation in muscle sympathetic nerve activity. Exp Brain Res. 2011;213:507–514. [PubMed] [Google Scholar]

134. Hammam E, Kwok K, Macefield VG. Modulation of muscle sympathetic nerve activity by low-frequency physiological activation of the vestibular utricle in awake humans. Exp Brain Res. 2013;230:137–142. [PubMed] [Google Scholar]

135. Hargens AR, Richardson S. Cardiovascular adaptations, fluid shifts, and countermeasures related to space flight. Respir Physiol Neurobiol. 2009;169(Suppl 1):S30–33. [PubMed] [Google Scholar]

136. Harms MP, Colier WN, Wieling W, Lenders JW, Secher NH, van Lieshout JJ. Orthostatic tolerance, cerebral oxygenation, and blood velocity in humans with sympathetic failure. Stroke. 2000;31:1608–1614. [PubMed] [Google Scholar]

137. Heidenreich K, Weisend S, Fouad-Tarazi F, White J. The incidence of coexistent autonomic and vestibular dysfunction in patients with postural dizziness. Am J Otolaryngol. 2009;30:225–229. [PubMed] [Google Scholar]

138. Henry RT, Connor JD, Balaban CD. Nodulus-uvula depressor response: central GABA-mediated inhibition of alpha-adrenergic outflow. Am J Physiol. 1989;256:H1601–H1608. [PubMed] [Google Scholar]

139. Hilton SM, Spyer KM. Central nervous regulation of vascular resistance. Ann Rev Physiol. 1980;42:399–411. [PubMed] [Google Scholar]

140. Hinghofer-Szalkay H. Gravity, the hydrostatic indifference concept and the cardiovascular system. Eur J Appl Physiol. 2011;111:163–174. [PubMed] [Google Scholar]

141. Holmes MJ, Cotter LA, Arendt HE, Cass SP, Yates BJ. Effects of lesions of the caudal cerebellar vermis on cardiovascular regulation in awake cats. Brain Res. 2002;938:62–72. [PubMed] [Google Scholar]

142. Holstein GR, Friedrich VL, Jr., Kang T, Kukielka E, Martinelli GP. Direct projections from the caudal vestibular nuclei to the ventrolateral medulla in the rat. Neurosci. 2011;175:104–117. [PMC free article] [PubMed] [Google Scholar]

143. Hume KM, Ray CA. Sympathetic responses to head-down rotations in humans. J Appl Physiol. 1999;86:1971–1976. [PubMed] [Google Scholar]

144. Ichinose M, Nishiyasu T. Arterial baroreflex control of muscle sympathetic nerve activity under orthostatic stress in humans. Front Physiol. 2012;3:314. [PMC free article] [PubMed] [Google Scholar]

145. Ishikawa T, Miyazawa T. Sympathetic responses evoked by vestibular stimulation and their interactions with somato-sympathetic reflexes. J Autonom Nerv Syst. 1980;1:243–254. [PubMed] [Google Scholar]

146. Ishikawa T, Miyazawa T, Shimizu I, Tomita H. Similarity between vestibulo-sympathetic response and supraspinal sympathetic reflex. Nihon Univ J Med. 1979;21:201–210. [Google Scholar]

147. Jacob RG, Furman JM. Psychiatric consequences of vestibular dysfunction. Curr Opin Neurol. 2001;14:41–46. [PubMed] [Google Scholar]

148. Jacob RG, Furman JM, Durrant JD, Turner SM. Panic, agoraphobia, and vestibular dysfunction. Am J Psychiatry. 1996;153:503–512. [PubMed] [Google Scholar]

149. Jacob RG, Furman JM, Perel JM. Panic, phobia and vestibular dysfunction. In: Yates BJ, Miller AD, editors. Vestibular Autonomic Regulation. CRC Press; Boca Raton, FL: 1996. [Google Scholar]

150. Jacob RG, Furman JMR, Clark DB, Durrant JD. Vestibular symptoms, panic and phobia: overlap and possible relationships. Annals of Clinical Psychiatry. 1992;4:163–174. [Google Scholar]

151. Jacobsen TN, Morgan BJ, Scherrer U, Vissing SF, Lange RA, Johnson N, Ring WS, Rahko PS, Hanson P, Victor RG. Relative contributions of cardiopulmonary and sinoaortic baroreflexes in causing sympathetic activation in the human skeletal muscle circulation during orthostatic stress. Circ Res. 1993;73:367–378. [PubMed] [Google Scholar]

152. James C, Macefield VG. Competitive interactions between vestibular and cardiac rhythms in the modulation of muscle sympathetic nerve activity. Auton Neurosci. 2010;158:127–131. [PubMed] [Google Scholar]

153. James C, Stathis A, Macefield VG. Vestibular and pulse-related modulation of skin sympathetic nerve activity during sinusoidal galvanic vestibular stimulation in human subjects. Exp Brain Res. 2010;202:291–298. [PubMed] [Google Scholar]

154. Janig W, Habler HJ. Neurophysiological analysis of target-related sympathetic pathways--from animal to human: similarities and differences. Acta Physiol Scand. 2003;177:255–274. [PubMed] [Google Scholar]

155. Jänig W, McLachlan EM. Neurobiology of the autonomic nervous system. In: Mathias CJ, Bannister SR, editors. Autonomic Failure: A Textbook of Clinical Disorders of the Autonomic Nervous System. Oxford: 2013. pp. 21–34. [Google Scholar]

156. Jänig W, McLachlan EM. Specialized functional pathways are the building blocks of the autonomic nervous system. J Autonom Nerv Syst. 1992;41:3–14. [PubMed] [Google Scholar]

157. Jauregui-Renaud K, Aw ST, Todd MJ, McGarvie LA, Halmagyi GM. Benign paroxysmal positional vertigo can interfere with the cardiac response to head-down tilt. Otol Neurotol. 2005;26:484–488. [PubMed] [Google Scholar]

158. Jauregui-Renaud K, Hermosillo AG, Gomez A, Marquez MF, Cardenas M, Bronstein AM. Vestibular function interferes in cardiovascular reflexes. Arch Med Res. 2003;34:200–204. [PubMed] [Google Scholar]

159. Jauregui-Renaud K, Reynolds R, Bronstein AM, Gresty MA. Cardio-respiratory responses evoked by transient linear acceleration. Aviation Space Environ Med. 2006;77:114–120. [PubMed] [Google Scholar]

160. Jeske I, Morrison SF, Cravo SL, Reis DJ. Identification of baroreceptor reflex interneurons in the caudal ventrolateral medulla. Am J Physiol. 1993;264:R169–R178. [PubMed] [Google Scholar]

161. Jian BJ, Acernese AW, Lorenzo J, Card JP, Yates BJ. Afferent pathways to the region of the vestibular nuclei that participates in cardiovascular and respiratory control. Brain Res. 2005;1044:241–250. [PubMed] [Google Scholar]

162. Jian BJ, Cotter LA, Emanuel BA, Cass SP, Yates BJ. Effects of bilateral vestibular lesions on orthostatic tolerance in awake cats. J Appl Physiol. 1999;86:1552–1560. [PubMed] [Google Scholar]

163. Jian BJ, Shintani T, Emanuel BA, Yates BJ. Convergence of limb, visceral, and vertical semicircular canal or otolith inputs onto vestibular nucleus neurons. Exp Brain Res. 2002;144:247–257. [PubMed] [Google Scholar]

164. Kanda K, Sato Y, Ikarashi K, Kawasaki T. Zonal organization of climbing fiber projections to the uvula in the cat. J Comp Neurol. 1989;279:138–148. [PubMed] [Google Scholar]

165. Kasper J, Schor RH, Wilson VJ. Response of vestibular neurons to head rotations in vertical planes. I. Response to vestibular stimulation. J Neurophysiol. 1988;60:1753–1764. [PubMed] [Google Scholar]

166. Kasper J, Schor RH, Wilson VJ. Response to vestibular neurons to head rotations in vertical planes. II. Response to neck stimulation and vestibular-neck interaction. J Neurophysiol. 1988;60:1765–1778. [PubMed] [Google Scholar]

167. Kaufmann H, Biaggioni I, Voustianiouk A, Diedrich A, Costa F, Clarke R, Gizzi M, Raphan T, Cohen B. Vestibular control of sympathetic activity. An otolith-sympathetic reflex in humans. Exp Brain Res. 2002;143:463–469. [PubMed] [Google Scholar]

168. Kerman IA, Emanuel BA, Yates BJ. Vestibular stimulation leads to distinct hemodynamic patterning. Am J Physiol Reg Integr Comp Physiol. 2000;279:R118–125. [PubMed] [Google Scholar]

169. Kerman IA, McAllen RM, Yates BJ. Patterning of sympathetic nerve activity in response to vestibular stimulation. Brain Res Bull. 2000;53:11–16. [PubMed] [Google Scholar]

170. Kerman IA, Yates BJ. Regional and functional differences in the distribution of vestibulosympathetic reflexes. Am J Physiol. 1998;275:R824–835. [PubMed] [Google Scholar]

171. Kerman IA, Yates BJ, McAllen RM. Anatomic patterning in the expression of vestibulosympathetic reflexes. Am J Physiol Reg Integr Comp Physiol. 2000;279:R109–117. [PubMed] [Google Scholar]

172. Kleine JF, Wilden A, Siebold C, Glasauer S, Buttner U. Linear spatio-temporal convergence in vestibular neurons of the primate nucleus fastigii. Neuroreport. 1999;10:3915–3921. [PubMed] [Google Scholar]

173. Kondo M, Sears TA, Sadakane K, Nisimaru N. Vagal afferent projections to lobule VIIa of the rabbit cerebellar vermis related to cardiovascular control. Neurosci Res. 1998;30:111–117. [PubMed] [Google Scholar]

174. Korte SM, Jaarsma D, Luiten PG, Bohus B. Mesencephalic cuneiform nucleus and its ascending and descending projections serve stress-related cardiovascular responses in the rat. J Auton Nerv Syst. 1992;41:157–176. [PubMed] [Google Scholar]

175. Krabbendam I, Jacobs LC, Lotgering FK, Spaanderman ME. Venous response to orthostatic stress. Am J Physiol Heart Circ Physiol. 2008;295:H1587–1593. [PubMed] [Google Scholar]

176. Krukoff TL, Harris KH, Jhamandas JH. Efferent projections from the parabrachial nucleus demonstrated with the anterograde tracer Phaseolus vulgaris leucoagglutinin. Brain Res Bull. 1993;30:163–172. [PubMed] [Google Scholar]

177. Lackner JR, Dizio P. Space motion sickness. Exp Brain Res. 2006;175:377–399. [PubMed] [Google Scholar]

178. Lawrence JE, Klein JC, Carter JR. Menstrual cycle elicits divergent forearm vascular responses to vestibular activation in humans. Auton Neurosci. 2010;154:89–93. [PMC free article] [PubMed] [Google Scholar]

179. Lee CM, Wood RH, Welsch MA. Influence of head-down and lateral decubitus neck flexion on heart rate variability. J Appl Physiol. 2001;90:127–132. [PubMed] [Google Scholar]

180. Lee TK, Lois JH, Troupe JH, Wilson TD, Yates BJ. Transneuronal tracing of neural pathways that regulate hindlimb muscle blood flow. Am J Physiol Reg Integr Comp Physiol. 2007;292:R1532–1541. [PubMed] [Google Scholar]

181. Len WB, Chan JYH. Glutamatergic projection to RVLM mediates suppression of reflex bradycardia by parabrachial nucleus. Am J Physiol Heart Circ Physiol. 1999;45:H1482–H1492. [PubMed] [Google Scholar]

182. Lisberger SG. The neural basis for learning of simple motor skills. Science. 1988;242:728–735. [PubMed] [Google Scholar]

183. MacNeilage PR, Banks MS, DeAngelis GC, Angelaki DE. Vestibular heading discrimination and sensitivity to linear acceleration in head and world coordinates. J Neurosci. 2010;30:9084–9094. [PMC free article] [PubMed] [Google Scholar]

184. Mano T, Iwase S. Sympathetic nerve activity in hypotension and orthostatic intolerance. Acta Physiol Scand. 2003;177:359–365. [PubMed] [Google Scholar]

185. Matsuda T, Gotoh TM, Tanaka K, Gao S, Morita H. Vestibulosympathetic reflex mediates the pressor response to hypergravity in conscious rats: contribution of the diencephalon. Brain Res. 2004;1028:140–147. [PubMed] [Google Scholar]

186. Matsukawa K. Central command: control of cardiac sympathetic and vagal efferent nerve activity and the arterial baroreflex during spontaneous motor behaviour in animals. Exp Physiol. 2012;97:20–28. [PubMed] [Google Scholar]

187. McAllen RM, Dampney RAL. Vasomotor neurons in the rostral ventrolateral medulla are organized topographically with respect to type of vascular bed but not body region. Neurosci Lett. 1990;110:91–96. [PubMed] [Google Scholar]

188. McAllen RM, May CN. Differential drives from rostral ventrolateral medullary neurons to three identified sympathetic outflows. Am J Physiol Regul Integr Comp Physiol. 1994;267:R935–R944. [PubMed] [Google Scholar]

189. McCall AA, Moy JD, Puterbaugh SR, DeMayo WM, Yates BJ. Responses of vestibular nucleus neurons to inputs from the hindlimb are enhanced following a bilateral labyrinthectomy. J Appl Physiol. 2013;114:742–751. [PMC free article] [PubMed] [Google Scholar]

190. McCall AA, Yates BJ. Compensation following bilateral vestibular damage. Frontiers in Neurology. 2011;88:1–14. [PMC free article] [PubMed] [Google Scholar]

191. McKenna KE. The autonomic neuroscience of sexual function. In: Mathias CJ, Bannister SR, editors. Autonomic Failure: A Textbook of Clinical Disorders of the Autonomic Nervous System. Oxford: 2013. pp. 119–131. [Google Scholar]

192. Megirian D, Manning JW. Input-output relations in the vestibular system. Arch Ital Biol. 1967;105:15–30. [PubMed] [Google Scholar]

193. Mifflin SW, Felder RB. Synaptic mechanisms regulating cardiovascular afferent inputs to solitary tract nucleus. Am J Physiol. 1990;259:H653–661. [PubMed] [Google Scholar]

194. Miles FA, Lisberger SG. Plasticity in the vestibulo-ocular reflex: a new hypothesis. Ann Rev Neurosci. 1981;4:273–299. [PubMed] [Google Scholar]

195. Miller DM, Cotter LA, Gandhi NJ, Schor RH, Cass SP, Huff NO, Raj SG, Shulman JA, Yates BJ. Responses of caudal vestibular nucleus neurons of conscious cats to rotations in vertical planes, before and after a bilateral vestibular neurectomy. Exp Brain Res. 2008;188:175–186. [PMC free article] [PubMed] [Google Scholar]

196. Minor LB, Goldberg JM. Vestibular-nerve inputs to the vestibulo-ocular reflex: a functional-ablation study in the squirrel monkey. J Neurosci. 1991;11:1636–1648. [PMC free article] [PubMed] [Google Scholar]

197. Mitchell JH. Neural control of the circulation during exercise: insights from the 1970-1971 Oxford studies. Exp Physiol. 2012;97:14–19. [PubMed] [Google Scholar]

198. Mittelstaedt H. Somatic versus vestibular gravity reception in man. Ann NY Acad Sci. 1992;656:124–139. [PubMed] [Google Scholar]

199. Miura M, Reis DJ. A blood pressure response from fastigial nucleus and its relay pathway in the brainstem. Am J Physiol. 1970;219:1330–1336. [PubMed] [Google Scholar]

200. Miura M, Reis DJ. The paramedian reticular nucleus: a site of inhibitory interaction between projections from fastigial nucleus and carotid sinus nerve acting on blood pressure. J Physiol: 1971;216:441–460. [PMC free article] [PubMed] [Google Scholar]

201. Miura M, Takayama K. Circulatory and respiratory responses to glutamate stimulation of the lateral parabrachial nucleus of the cat. J Auton Nerv Syst. 1991;32:121–133. [PubMed] [Google Scholar]

202. Miyazawa T, Ishikawa T. Cerebellar inhibitory action on vestibulo-sympathetic responses. J Autonom Nerv Syst. 1983;7:185–189. [PubMed] [Google Scholar]

203. Monahan KD, Ray CA. Gender affects calf venous compliance at rest and during baroreceptor unloading in humans. Am J Physiol Heart Circ Physiol. 2004;286:H895–901. [PubMed] [Google Scholar]

204. Monahan KD, Ray CA. Limb neurovascular control during altered otolithic input in humans. J Physiol. 2002;538:303–308. [PMC free article] [PubMed] [Google Scholar]

205. Monahan KD, Ray CA. Vestibulosympathetic reflex during orthostatic challenge in aging humans. Am J Physiol Regul Integr Comp Physiol. 2002;283:R1027–1032. [PubMed] [Google Scholar]

206. Money KE. Motion sickness. Physiol Rev. 1970;50:1–39. [PubMed] [Google Scholar]

207. Mori RL, Cotter LA, Arendt HE, Olsheski CJ, Yates BJ. Effects of bilateral vestibular nucleus lesions on cardiovascular regulation in conscious cats. J Appl Physiol. 2005;98:526–533. [PubMed] [Google Scholar]

208. Morrison SF, Gebber GL. Axonal branching patterns and funicular trajectories of raphespinal sympathoinhibitory neurons. J Neurophysiol. 1985;53:759–772. [PubMed] [Google Scholar]

209. Morrison SF, Gebber GL. Classification of raphe neurons with cardiac-related activity. Am J Physiol. 1982;243:R49–59. [PubMed] [Google Scholar]

210. Morrison SF, Gebber GL. Raphe neurons with sympathetic-related activity: baroreceptor responses and spinal connections. Am J Physiol. 1984;246:R338–348. [PubMed] [Google Scholar]

211. Morrison SF, Nakamura K. Central neural pathways for thermoregulation. Front Biosci (Landmark Ed) 2011;16:74–104. [PMC free article] [PubMed] [Google Scholar]

212. Moy JD, Miller DJ, Catanzaro MF, Boyle BM, Ogburn SW, Cotter LA, Yates BJ, McCall AA. Responses of Neurons in the Caudal Medullary Lateral Tegmental Field to Visceral Inputs and Vestibular Stimulation in Vertical Planes. Am J Physiol Regul Integr Comp Physiol. 2012;303:R929–R940. [PMC free article] [PubMed] [Google Scholar]

213. Nakamoto T, Matsukawa K, Liang N, Wakasugi R, Wilson LB, Horiuchi J. Coactivation of renal sympathetic neurons and somatic motor neurons by chemical stimulation of the midbrain ventral tegmental area. J Appl Physiol. 2011;110:1342–1353. [PubMed] [Google Scholar]

214. Nalivaiko E, Blessing WW. Potential role of medullary raphe-spinal neurons in cutaneous vasoconstriction: an in vivo electrophysiological study. J Neurophysiol. 2002;87:901–911. [PubMed] [Google Scholar]

215. Ng AV, Johnson DG, Callister R, Seals DR. Muscle sympathetic nerve activity during postural change in healthy young and older adults. Clin Auton Res. 1995;5:57–60. [PubMed] [Google Scholar]

216. Nisimaru N. Cardiovascular modules in the cerebellum. Jpn J Physiol. 2004;54:431–448. [PubMed] [Google Scholar]

217. Nisimaru N, Katayama S. Projection of cardiovascular afferents to the lateral nodulus-uvula of the cerebellum in rabbits. Neurosci Res. 1995;21:343–350. [PubMed] [Google Scholar]

218. Nisimaru N, Watanabe Y. A depressant area in the lateral nodulus-uvula of the cerebellum for renal sympathetic nerve activity and systemic blood pressure in the rabbit. Neurosci Res. 1985;3:177–181. [PubMed] [Google Scholar]

219. Nisimaru N, Yamamoto M. Depressant action of the posterior lobe of the cerebellum upon renal sympathetic nerve activity. Brain Res. 1977;133:371–375. [PubMed] [Google Scholar]

220. Normand H, Etard O, Denise P. Otolithic and tonic neck receptors control of limb blood flow in humans. J Appl Physiol. 1997;82:1734–1738. [PubMed] [Google Scholar]

221. Okahara K, Nisimaru N. Climbing fiber responses evoked in lobule VII of the posterior cerebellum from a vagal nerve in rabbits. Neurosci Res. 1991;12:232–239. [PubMed] [Google Scholar]

222. Ootsuka Y, Blessing WW, McAllen RM. Inhibition of rostral medullary raphe neurons prevents cold-induced activity in sympathetic nerves to rat tail and rabbit ear arteries. Neurosci Lett. 2004;357:58–62. [PubMed] [Google Scholar]

223. Paintal AS. Vagal sensory receptors and their reflex effects. Physiol Rev. 1973;53:159–227. [PubMed] [Google Scholar]

224. Pan PS, Zhang YS, Chen YZ. Role of nucleus vestibularis medialis in vestibulo-sympathetic response in rats. Acta Physiologica Sinica. 1991;43:184–188. [PubMed] [Google Scholar]

225. Paton JF, Gilbey MP. Effect of anesthetic on sympathetic responses evoked from cerebellar uvula in decerebrate cats. Am J Physiol. 1992;263:H1285–1291. [PubMed] [Google Scholar]

226. Paton JF, La Noce A, Sykes RM, Sebastiani L, Bagnoli P, Ghelarducci B, Bradley DJ. Efferent connections of lobule IX of the posterior cerebellar cortex in the rabbit--some functional considerations. J Auton Nerv Syst. 1991;36:209–224. [PubMed] [Google Scholar]

227. Paton JFR, Silva-Carvalho L, Thompson CS, Spyer KM. Nucleus tractus solitarius as mediator of evoked parabrachial cariovascular responses in the decerebrate rabbit. J Physiol. 1990;428:693–705. [PMC free article] [PubMed] [Google Scholar]

228. Patterson SW, Starling EH. On the mechanical factors which determine the output of the ventricles. J Physiol. 1914;48:357–379. [PMC free article] [PubMed] [Google Scholar]

229. Pilowsky PM, Goodchild AK. Baroreceptor reflex pathways and neurotransmitters: 10 years on. J Hypertens. 2002;20:1675–1688. [PubMed] [Google Scholar]

230. Pitman JR, Yolton RL. Etiology and treatment of motion sickness: a review. J Am Optometric Assoc. 1983;54:31–38. [PubMed] [Google Scholar]

231. Pompeiano O. Vestibulospinal relations: vestibular influences on gamma motoneurons and primary afferents. Prog Brain Res. 1972;37:197–232. [PubMed] [Google Scholar]

232. Porter JD, Balaban CD. Connections between the vestibular nuclei and brain stem regions that mediate autonomic function in the rat. J Vestib Res. 1997;7:63–76. [PubMed] [Google Scholar]

233. Precht W, Volkind R, Maeda M, Giretti ML. The effects of stimulating the cerebellar nodulus in the cat on the responses of vestibular neurons. Neurosci. 1976;1:301–312. [PubMed] [Google Scholar]

234. Radtke A, Popov K, Bronstein AM, Gresty MA. Evidence for a vestibulo-cardiac reflex in man. Lancet. 2000;356:736–737. [PubMed] [Google Scholar]

235. Radtke A, Popov K, Bronstein AM, Gresty MA. Vestibulo-autonomic control in man: Short- and long-latency vestibular effects on cardiovascular function. J Vestib Res. 2003;13:25–37. [PubMed] [Google Scholar]

236. Ray CA. Effect of gender on vestibular sympathoexcitation. Am J Physiol Regul Integr Comp Physiol. 2000;279:R1330–R1333. [PubMed] [Google Scholar]

237. Ray CA. Interaction of the vestibular system and baroreflexes on sympathetic nerve activity in humans. Am J Physiol Heart Circ Physiol. 2000;279:H2399–2404. [PubMed] [Google Scholar]

238. Ray CA, Hume KM. Neck afferents and muscle sympathetic activity in humans: implications for the vestibulosympathetic reflex. J Appl Physiol. 1998;84:450–453. [PubMed] [Google Scholar]

239. Ray CA, Hume KM, Shortt TL. Skin sympathetic outflow during head-down neck flexion in humans. Am J Physiol. 1997;273:R1142–1146. [PubMed] [Google Scholar]

240. Ray CA, Hume KM, Steele SL. Sympathetic nerve activity during natural stimulation of horizontal semicircular canals in humans. Am J Physiol. 1998;275:R1274–1278. [PubMed] [Google Scholar]

241. Rea RF, Wallin BG. Sympathetic nerve activity in arm and leg muscles during lower body negative pressure in humans. J Appl Physiol. 1989;66:2778–2781. [PubMed] [Google Scholar]

242. Reason JT, Brandt JJ. Motion Sickness. Academic Press; London: 1975. [Google Scholar]

243. Reis DJ, Ledoux JE. Some central neural mechanisms governing resting and behaviorally coupled control of blood pressure. Circulation. 1987;76:I2–9. [PubMed] [Google Scholar]

244. Reis DJ, Ross CA, Ruggiero DA, Granata AR, Joh TH. Role of adrenaline neurons of ventrolateral medulla (the C1 group) in the tonic and phasic control of arterial pressure. Clin Exp Hypertens A. 1984;6:221–241. [PubMed] [Google Scholar]

245. Rowland TW. The circulatory response to exercise: role of the peripheral pump. Int J Sports Med. 2001;22:558–565. [PubMed] [Google Scholar]

246. Ruggiero DA, Mtui EP, Otake K, Anwar M. Vestibular afferents to the dorsal vagal complex: Substrate for vestibular-autonomic interactions in the rat. Brain Res. 1996;743:294–302. [PubMed] [Google Scholar]

247. Ruggiero DA, Regunathan S, Wang H, Milner TA, Reis DJ. Immunocytochemical localization of an imidazoline receptor protein in the central nervous system. Brain Res. 1998;780:270–293. [PubMed] [Google Scholar]

248. Ruggiero DA, Underwood MD, Mann JJ, Anwar M, Arango V. The human nucleus of the solitary tract: visceral pathways revealed with an “in vitro” postmortem tracing method. J Autonom Nerv Syst. 2000;79:181–190. [PubMed] [Google Scholar]

249. Rushmer RF. Cardiovascular Dynamics. Saunders; Philadelphia: 1976. [Google Scholar]

250. Sadakane K, Kondo M, Nisimaru N. Direct projection from the cardiovascular control region of the cerebellar cortex, the lateral nodulus-uvula, to the brainstem in rabbits. Neurosci Res. 2000;36:15–26. [PubMed] [Google Scholar]

251. Sagawa K. Baroreflex control of systemic arterial pressure and vascular bed. In: Shepherd JT, Abboud FM, editors. Handbook of Physiology Section 2: Circulation Volume III: Peripheral Circulation and Organ Blood Flow, Part 2. American Physiological Society; Bethesa, MD: 1983. pp. 453–496. [Google Scholar]

252. Sauder CL, Leonard TO, Ray CA. Greater sensitivity of the vestibulosympathetic reflex in the upright posture in humans. J Appl Physiol. 2012;105:65–69. [PMC free article] [PubMed] [Google Scholar]

253. Schramm LP, Strack AM, Platt KB, Loewy AD. Peripheral and central pathways regulating the kidney - a study using pseudorabies virus. Brain Res. 1993;616:251–262. [PubMed] [Google Scholar]

254. Seagard JL, Hopp FA, Drummond HA, Van Wynsberghe DM. Selective contribution of two types of carotid sinus baroreceptors to the control of blood pressure. Circ Res. 1993;72:1011–1022. [PubMed] [Google Scholar]

255. Serrador JM, Schlegel TT, Black FO, Wood SJ. Vestibular effects on cerebral blood flow. BMC Neurosci. 2009;10:119. [PMC free article] [PubMed] [Google Scholar]

256. Shaikh AG, Ghasia FF, Dickman JD, Angelaki DE. Properties of cerebellar fastigial neurons during translation, rotation, and eye movements. J Neurophysiol. 2005;93:853–863. [PubMed] [Google Scholar]

257. Shaikh AG, Meng H, Angelaki DE. Multiple reference frames for motion in the primate cerebellum. J Neurosci. 2004;24:4491–4497. [PMC free article] [PubMed] [Google Scholar]

258. Shojaku H, Sato Y, Ikarashi K, Kawasaki T. Topographical distribution of Purkinje cells in the uvula and the nodulus projecting to the vestibular nuclei in cats. Brain Res. 1987;416:100–112. [PubMed] [Google Scholar]

259. Shortt TL, Ray CA. Sympathetic and vascular responses to head-down neck flexion in humans. Am J Physiol. 1997;272:H1780–1784. [PubMed] [Google Scholar]

260. Siebold C, Glonti L, Glasauer S, Buttner U. Rostral fastigial nucleus activity in the alert monkey during three-dimensional passive head movements. J Neurophysiol. 1997;77:1432–1446. [PubMed] [Google Scholar]

261. Siebold C, Kleine JF, Glonti L, Tchelidze T, Buttner U. Fastigial nucleus activity during different frequencies and orientations of vertical vestibular stimulation in the monkey. J Neurophysiol. 1999;82:34–41. [PubMed] [Google Scholar]

262. Silva-Carvalho L, Paton JF, Goldsmith GE, Spyer KM. The effects of electrical stimulation of lobule IXb of the posterior cerebellar vermis on neurones within the rostral ventrolateral medulla in the anaesthetised cat. J Autonom Nerv Syst. 1991;36:97–106. [PubMed] [Google Scholar]

263. Silvoniemi P. Vestibular neuronitis. An otoneurological evaluation. Acta Otolaryngol Suppl. 1988;453:1–72. [PubMed] [Google Scholar]

264. Smith JE, Jansen AS, Gilbey MP, Loewy AD. CNS cell groups projecting to sympathetic outflow of tail artery: neural circuits involved in heat loss in the rat. Brain Res. 1998;786:153–164. [PubMed] [Google Scholar]

265. Smith OA, Jr., Clarke NP. Central Autonomic Pathways. A Study in Functional Neuroanatomy. J Comp Neurol. 1964;122:399–406. [PubMed] [Google Scholar]

266. Smith OA, Jr., Nathan MA. Inhibition of the carotid sinus reflex by stimulation of the inferior olive. Science. 1966;154:674–675. [PubMed] [Google Scholar]

267. Somana R, Walberg F. Cerebellar afferents from the nucleus of the solitary tract. Neurosci Lett. 1979;11:41–47. [PubMed] [Google Scholar]

268. Spiegel EA. Effect of labyrinthine reflexes on the vegetative nervous system. Arch Otolaryngol. 1946;44:61–72. [PubMed] [Google Scholar]

269. Spiegel EA, Démétriades TD. Der Einfluss des Vestibular-apparates auf das Gefässsystem. Pflügers Arch ges Physiol. 1922;196:185–188. [Google Scholar]

270. Spyer KM. Annual review prize lecture - central nervous mechanisms contributing to cardiovascular control. J Physiol. 1994;474:1–19. [PMC free article] [PubMed] [Google Scholar]

271. Spyer KM. Neural organisation and control of the baroreceptor reflex. Rev Physiol Biochem Pharmacol. 1981;88:23–124. [PubMed] [Google Scholar]

272. Stanojevic M. Responses of cerebellar fastigial neurons to neck and macular vestibular inputs. Pflugers Arch. 1981;391:267–272. [PubMed] [Google Scholar]

273. Stanojevic M, Erway L, Ghelarducci B, Pompeiano O, Willis WD., Jr. A comparison of the response characteristics of cerebellar fastigial and vermal cortex neurons to sinusoidal stimulation of macular vestibular receptors. Pflugers Archiv. 1980;385:95–104. [PubMed] [Google Scholar]

274. Starling EH. The Linacre Lectue on the Law of the Heart. Longmans, Green; London: 1918. [Google Scholar]

275. Steinbacher BC, Jr., Yates BJ. Brain-stem integrative sites for vestibulo-sympathetic reflexes. Ann N Y Acad Sci. 1996;781:700–702. [PubMed] [Google Scholar]

276. Steinbacher BC, Yates BJ. Brainstem interneurons necessary for vestibular influences on sympathetic outflow. Brain Res. 1996;720:204–210. [PubMed] [Google Scholar]

277. Steinbacher BC, Yates BJ. Processing of vestibular and other inputs by the caudal ventrolateral medullary reticular formation. Am J Physiol Regul Integr Comp Physiol. 1996;271:R1070–R1077. [PubMed] [Google Scholar]

278. Stocker SD, Steinbacher BC, Balaban CD, Yates BJ. Connections of the caudal ventrolateral medullary reticular formation in the cat brainstem. Exp Brain Res. 1997;116:270–282. [PubMed] [Google Scholar]

279. Strack AM, Sawyer WB, Marubio LM, Loewy AD. Spinal origin of sympathetic preganglionic neurons in the rat. Brain Res. 1988;455:187–191. [PubMed] [Google Scholar]

280. Sugiyama Y, Suzuki T, DeStefino VJ, Yates BJ. Integrative responses of neurons in nucleus tractus solitarius to visceral afferent stimulation and vestibular stimulation in vertical planes. Am J Physiol Regul Integr Comp Physiol. 2011;301:R1380–1390. [PMC free article] [PubMed] [Google Scholar]

281. Sugiyama Y, Suzuki T, Yates BJ. Role of the rostral ventrolateral medulla (RVLM) in the patterning of vestibular system influences on sympathetic nervous system outflow to the upper and lower body. Exp Brain Res. 2011;210:515–527. [PMC free article] [PubMed] [Google Scholar]

282. Sundlof G, Wallin BG. The variability of muscle nerve sympathetic activity in resting recumbent man. J Physiol. 1977;272:383–397. [PMC free article] [PubMed] [Google Scholar]

283. Sved AF, Ito S, Madden CJ, Stocker SD, Yajima Y. Excitatory inputs to the RVLM in the context of the baroreceptor reflex. Ann NY Acad Sci. 2001;940:247–258. [PubMed] [Google Scholar]

284. Sved AF, Ito S, Sved JC. Brainstem mechanisms of hypertension: role of the rostral ventrolateral medulla. Current Hypertension Rep. 2003;5:262–268. [PubMed] [Google Scholar]

285. Sverrisdottir YB, Rundqvist B, Elam M. Relative burst amplitude in human muscle sympathetic nerve activity: a sensitive indicator of altered sympathetic traffic. Clin Auton Res. 1998;8:95–100. [PubMed] [Google Scholar]

286. Tang PC, Gernandt BE. Autonomic responses to vestibular stimulation. Exp Neurol. 1969;24:558–578. [PubMed] [Google Scholar]

287. Thoren PN. Atrial receptors with nonmedullated vagal afferents in the cat. Discharge frequency and pattern in relation to atrial pressure. Circ Res. 1976;38:357–362. [PubMed] [Google Scholar]

288. Uchino Y. Effects of electric stimulation of the vestibular nerve on sympathetic nervous activities. Shinkei Kenkyu No Shimpo. 1970;14:129–133. [PubMed] [Google Scholar]

289. Uchino Y, Kudo N, Tsuda K, Iwamura Y. Vestibular inhibition of sympathetic nerve activities. Brain Res. 1970;22:195–206. [PubMed] [Google Scholar]

290. Ugolini G. Transneuronal transfer of herpes simplex virus type 1 (HSV 1) from mixed limb nerves to the CNS. I. Sequence of transfer from sensory, motor, and sympathetic nerve fibres to the spinal cord. J Comp Neurol. 1992;326:527–548. [PubMed] [Google Scholar]

291. Valbo AH, Hagbath K-E, Wallin BG. Microneurography: how the techniques developed and its role in the investigation of the sympathetic nervosu system. J Appl Physiol. 2004;96:1262–1269. [PubMed] [Google Scholar]

292. van Lieshout JJ, Wieling W, Wesseling KH, Endert E, Karemaker JM. Orthostatic hypotension caused by sympathectomies performed for hyperhidrosis. Neth J Med. 1990;36:53–57. [PubMed] [Google Scholar]

293. Vertes RP, Crane AM. Descending projections of the posterior nucleus of the hypothalamus: Phaseolus vulgaris leucoagglutinin analysis in the rat. J Comp Neurol. 1996;374:607–631. [PubMed] [Google Scholar]

294. Vibert D, Safran A. Subjective visual vertical in peripheral unilateral vestibular diseases. J Vestib Res. 1999;9:145–152. [PubMed] [Google Scholar]

295. Vissing SF, Scherrer U, Victor RG. Increase of sympathetic discharge to skeletal muscle but not to skin during mild lower body negative pressure in humans. J Physiol. 1994;481(Pt 1):233–241. [PMC free article] [PubMed] [Google Scholar]

296. Voustianiouk A, Kaufmann H, Diedrich A, Raphan T, Biaggioni I, Macdougall H, Ogorodnikov D, Cohen B. Electrical activation of the human vestibulo-sympathetic reflex. Exp Brain Res. 2006;171:251–261. [PubMed] [Google Scholar]

297. Walberg F, Dietrichs E. The interconnection between the vestibular nuclei and the nodulus: a study of reciprocity. Brain Res. 1988;449:47–53. [PubMed] [Google Scholar]

298. Waldrop TG, Eldridge FL, Iwamoto GA, Mitchell JH. Central neural control of respiration and circulation during exercise. In: Rowell LB, Shepherd JT, editors. Handbook of Physiology, Section 12, Exercise: Regulation and Integration of Multiple Systems. Oxford University Press; New York: 1996. [Google Scholar]

299. Waldrop TG, Iwamoto GA. Cardiovascular responses to chemical stimulation of the inferior olive in the cat. Brain Res Bull. 1991;26:667–670. [PubMed] [Google Scholar]

300. Wang W, Han HY, Zucker IH. Depressed baroreflex in heart failure is not due to structural change in carotid sinus nerve fibers. J Auton Nerv Syst. 1996;57:101–108. [PubMed] [Google Scholar]

301. Watenpaugh DE, Cothron AV, Wasmund SL, Wasmund WL, Carter R, 3rd, Muenter NK, Smith ML. Do vestibular otolith organs participate in human orthostatic blood pressure control? Auton Neurosci. 2002;100:77–83. [PubMed] [Google Scholar]

302. Watenpaugh DE, Hargens AR. The cardiovascular system in microgravity. In: Fregley MJ, Blatteis CM, editors. Handbook of Physiology Section 4: Environmental Physiology. Oxford University Press; New York: 1996. pp. 631–674. [Google Scholar]

303. Wearne S, Raphan T, Waespe W, Cohen B. Control of the three-dimensional dynamic characteristics of the angular vestibulo-ocular reflex by the nodulus and uvula. In: Dezeeuw CI, Strata P, Voogd J, editors. Cerebellum: from Structure to Control. Elsevier; Amsterdam: 1997. pp. 321–334. [PubMed] [Google Scholar]

304. Wieling W, Krediet CT, van Dijk N, Linzer M, Tschakovsky ME. Initial orthostatic hypotension: review of a forgotten condition. Clin Sci (Lond) 2007;112:157–165. [PubMed] [Google Scholar]

305. Williamson JW. The relevance of central command for the neural cardiovascular control of exercise. Exp Physiol. 2010;95:1043–1048. [PMC free article] [PubMed] [Google Scholar]

306. Wilson TD, Cotter LA, Draper JA, Misra SP, Rice CD, Cass SP, Yates BJ. Effects of postural changes and removal of vestibular inputs on blood flow to the head of conscious felines. J Appl Physiol. 2006;100:1475–1482. [PubMed] [Google Scholar]

307. Wilson TD, Cotter LA, Draper JA, Misra SP, Rice CD, Cass SP, Yates BJ. Vestibular inputs elicit patterned changes in limb blood flow in conscious cats. J Physiol. 2006;575:671–684. [PMC free article] [PubMed] [Google Scholar]

308. Wilson TD, Serrador JM, Shoemaker JK. Head position modifies cerebrovascular response to orthostatic stress. Brain Res. 2003;961:261–268. [PubMed] [Google Scholar]

309. Wilson TE, Kuipers NT, McHugh EA, Ray CA. Vestibular activation does not influence skin sympathetic nerve responses during whole body heating. J Appl Physiol. 2004;97:540–544. [PubMed] [Google Scholar]

310. Wilson VJ. Vestibulospinal and neck reflexes interaction in the vestibular nuclei. Arch Ital Biol. 1991;129:43–52. [PubMed] [Google Scholar]

311. Wilson VJ, Schor RH, Suzuki I, Park BR. Spatial organization of neck and vestibular reflexes acting on the forelimbs of the decerebrate cat. J Neurophysiol. 1986;55:514–526. [PubMed] [Google Scholar]

312. Woodring SF, Rossiter CD, Yates BJ. Pressor response elicited by nose-up vestibular stimulation in cats. Exp Brain Res. 1997;113:165–168. [PubMed] [Google Scholar]

313. Yates BJ. Motion sickness. In: Binder MD, Hirokawa N, Windhorst U, editors. Encyclopedia of Neuroscience. Springer-Verlag; Heidelberg: 2009. pp. 2410–2413. [Google Scholar]

314. Yates BJ. Vestibular influences on the autonomic nervous system. Ann NY Acad Sci. 1996;781:458–473. [PubMed] [Google Scholar]

315. Yates BJ, Aoki M, Burchill P, Bronstein AM, Gresty MA. Cardiovascular responses elicited by linear acceleration in humans. Exp Brain Res. 1999;125:476–484. [PubMed] [Google Scholar]

316. Yates BJ, Balaban CD, Miller AD, Endo K, Yamaguchi Y. Vestibular inputs to the lateral tegmental field of the cat: potential role in autonomic control. Brain Res. 1995;689:197–206. [PubMed] [Google Scholar]

317. Yates BJ, Bronstein AM. Vestibular system influences on respiratory muscle activity and cardiovascular functions. In: Mathias CJ, Bannister SR, editors. Autonomic Failure: A Textbook of Clinical Disorders of the Autonomic Nervous System. Oxford: 2013. pp. 97–107. [Google Scholar]

318. Yates BJ, Goto T, Bolton PS. Responses of neurons in the caudal medullary raphe nuclei of the cat to stimulation of the vestibular nerve. Exp Brain Res. 1992;89:323–332. [PubMed] [Google Scholar]

319. Yates BJ, Goto T, Bolton PS. Responses of neurons in the rostral ventrolateral medulla of the cat to natural vestibular stimulation. Brain Res. 1993;601:255–264. [PubMed] [Google Scholar]

320. Yates BJ, Goto T, Kerman I, Bolton PS. Responses of caudal medullary raphe neurons to natural vestibular stimulation. J Neurophysiol. 1993;70:938–946. [PubMed] [Google Scholar]

321. Yates BJ, Grélot L, Kerman IA, Balaban CD, Jakus J, Miller AD. Organization of vestibular inputs to nucleus tractus solitarius and adjacent structures in cat brain stem. Am J Physiol. 1994;267:R974–983. [PubMed] [Google Scholar]

322. Yates BJ, Holmes MJ, Jian BJ. Plastic changes in processing of graviceptive signals during spaceflight potentially contribute to postflight orthostatic intolerance. J Vestib Res. 2003;13:395–404. [PubMed] [Google Scholar]

323. Yates BJ, Jakus J, Miller AD. Vestibular effects on respiratory outflow in the decerebrate cat. Brain Res. 1993;629:209–217. [PubMed] [Google Scholar]

324. Yates BJ, Jian BJ, Cotter LA, Cass SP. Responses of vestibular nucleus neurons to tilt following chronic bilateral removal of vestibular inputs. Exp Brain Res. 2000;130:151–158. [PubMed] [Google Scholar]

325. Yates BJ, Kerman IA. Post-spaceflight orthostatic intolerance: possible relationship to microgravity-induced plasticity in the vestibular system. Brain Res Rev. 1998;28:73–82. [PubMed] [Google Scholar]

326. Yates BJ, Miller AD. Physiological evidence that the vestibular system participates in autonomic and respiratory control. J Vestib Res. 1998;8:17–25. [PubMed] [Google Scholar]

327. Yates BJ, Miller AD. Properties of sympathetic reflexes elicited by natural vestibular stimulation: implications for cardiovascular control. J Neurophysiol. 1994;71:2087–2092. [PubMed] [Google Scholar]

328. Yates BJ, Siniaia MS, Miller AD. Descending pathways necessary for vestibular influences on sympathetic and inspiratory outflow. Am J Physiol Regul Integr Comp Physiol. 1995;268:R1381–R1385. [PubMed] [Google Scholar]

329. Yates BJ, Wilson TD. Vestibulo-autonomic responses. In: Squire LR, editor. Encyclopedia of Neuroscience. Academic Press; Oxford: 2009. pp. 133–138. [Google Scholar]

330. Yates BJ, Yamagata Y, Bolton PS. The ventrolateral medulla of the cat mediates vestibulosympathetic reflexes. Brain Res. 1991;552:265–272. [PubMed] [Google Scholar]

331. Yavorcik KJ, Reighard DA, Misra SP, Cotter LA, Cass SP, Wilson TD, Yates BJ. Effects of postural changes and removal of vestibular inputs on blood flow to and from the hindlimb of conscious felines. Am J Physiol Regul Integr Comp Physiol. 2009;297:R1777–1784. [PMC free article] [PubMed] [Google Scholar]

332. Zhong S, Huang ZS, Gebber GL, Barman SM. Role of the brain stem in generating the 2- to 6-Hz oscillation in sympathetic nerve discharge. Am J Physiol. 1993;265:R1026–1035. [PubMed] [Google Scholar]

333. Zhou W, Tang BF, King WM. Responses of rostral fastigial neurons to linear acceleration in an alert monkey. Exp Brain Res. 2001;139:111–115. [PubMed] [Google Scholar]


Page 2

What should one surmise if a blood flow found on an object or body does not appear consistent with the direction of gravity?

Primary connections of the sympathetic and parasympathetic nervous system that control blood flow and blood pressure. Parasympathetic preganglionic neurons (PrG) whose cell bodies are located in the brainstem send axons principally through the vagus nerve to postganglionic neurons (PoG) whose cell bodies are located in ganglia near the heart. Parasympathetic PrG release the neurotransmitter acetylcholine (Ach) onto nicotinic (N) receptors on the cell body and dendrites of parasympathetic PoG. Parasympathetic PoG release acetylcholine onto muscarinic receptors on the surface of autorhythmic (pacemaker) cells in the heart, particularly those in the sinoatrial node. The binding of acetylcholine to these muscarinic receptors induces a decrease in heart rate.

Sympathetic PrG whose cell bodies are located in the thoracic and lumbar spinal cord send axons to PoG whose cell bodies are located in prevertebral or paravertebral ganglia. Like parasympathetic PrG, sympathetic PrG release Ach onto nicotinic receptors located on the cell body and dendrites of sympathetic PoG. Sympathetic PoG project to the heart, and release the neurotransmitter norepinephrine (NE) onto β1 receptors located on the surface of pacemaker cells. The binding of norepinephrine to these receptors induces an increase in heart rate.

Sympathetic PoG additionally release norepinephrine onto β1 receptors located on myocytes in the ventricles of the heart. Binding of neurotransmitter to these receptors induces an increase in contractility of the muscle cells. Furthermore, sympathetic PoG innervate smooth muscle in the walls of blood vessels, primarily arterioles. Norepinephrine released from PoG binds primarily to α receptors on the surface of vascular smooth muscle. Binding of norepinephrine to these receptors causes vasoconstriction, and results in decreased blood flow through the affected vessels.

In addition, sympathetic PrG release acetylcholine onto nicotinic receptors on adrenal chromaffin cells. Binding of acetylcholine to these receptors induces the release of epinephrine (E) and some norepinephrine from the chromaffin cells. Epinephrine preferentially binds to β receptors, and elicits an increase in heart rate and ventricular contractility by binding to β1 receptors in the heart. Epinephrine also binds to β2 receptors associated with vascular smooth muscle in particular vascular beds, including arterioles in skeletal muscle. Binding of epinephrine to β2 receptors results in vasodilation. However, when epinephrine levels are high, the hormone binds to α receptors and causes vasoconstriction. Thus, epinephrine can result in an increase or decrease in blood flow to a particular tissue, depending on the amount of the hormone released into the bloodstream.


Page 3

What should one surmise if a blood flow found on an object or body does not appear consistent with the direction of gravity?

Neural regions that generate and modify the gains of vestibulosympathetic reflexes (VSR) and baroreceptor reflexes. Abbreviations: BA, baroreceptor afferent; BP, blood pressure; IML, intermediolateral cell column; IO, inferior olivary nucleus; IX, cerebellar lobule IX, uvula; NTS, nucleus tractus solitaries; PBN, parabrachial nucleus; RF, reticular formation; RVLM: rostral ventrolateral medulla; VA, vestibular afferent; VN, vestibular nucleus complex.

  • What should one surmise if a blood flow found on an object or body does not appear consistent with the direction of gravity?
  • What should one surmise if a blood flow found on an object or body does not appear consistent with the direction of gravity?
  • What should one surmise if a blood flow found on an object or body does not appear consistent with the direction of gravity?
  • What should one surmise if a blood flow found on an object or body does not appear consistent with the direction of gravity?
  • What should one surmise if a blood flow found on an object or body does not appear consistent with the direction of gravity?
  • What should one surmise if a blood flow found on an object or body does not appear consistent with the direction of gravity?
  • What should one surmise if a blood flow found on an object or body does not appear consistent with the direction of gravity?
  • What should one surmise if a blood flow found on an object or body does not appear consistent with the direction of gravity?
  • What should one surmise if a blood flow found on an object or body does not appear consistent with the direction of gravity?
  • What should one surmise if a blood flow found on an object or body does not appear consistent with the direction of gravity?
  • What should one surmise if a blood flow found on an object or body does not appear consistent with the direction of gravity?
  • What should one surmise if a blood flow found on an object or body does not appear consistent with the direction of gravity?
  • What should one surmise if a blood flow found on an object or body does not appear consistent with the direction of gravity?
  • What should one surmise if a blood flow found on an object or body does not appear consistent with the direction of gravity?
  • What should one surmise if a blood flow found on an object or body does not appear consistent with the direction of gravity?
  • What should one surmise if a blood flow found on an object or body does not appear consistent with the direction of gravity?
  • What should one surmise if a blood flow found on an object or body does not appear consistent with the direction of gravity?
  • What should one surmise if a blood flow found on an object or body does not appear consistent with the direction of gravity?
  • What should one surmise if a blood flow found on an object or body does not appear consistent with the direction of gravity?
  • What should one surmise if a blood flow found on an object or body does not appear consistent with the direction of gravity?
  • What should one surmise if a blood flow found on an object or body does not appear consistent with the direction of gravity?

Click on the image to see a larger version.