What is the probability of randomly picking a Jack from a deck of 52 playing cards?



Questions about how to figure out the probability of picking from a deck of cards common in basic stats courses. For example, the probability of choosing one card, and getting a certain number card (e.g. a 7) or one from a certain suit (e.g. a club).

Watch the video for examples:

Probability of getting cards from a deck

Watch this video on YouTube.


Can’t see the video? Click here.

You might wonder why you’re learning about cards (what’s the point?). The answer is that finding probabilities (like the probability of contracting an illness) can be a tricky concept to grasp at first. So your instructor will try and simplify problems using cards, dice or Bingo numbers. Once you’ve grasped the basics, you’ll start to use “real life” data for probability (usually a bit later on in the class, for example in normal distributions).
Here’s how to find the probability of picking something in a couple of simple steps.



Probability of picking from a deck of cards: Steps

What is the probability of randomly picking a Jack from a deck of 52 playing cards?

  • Step 1: figure out the total number of cards you might pull.
    Write down all the possible cards and mark the ones that you would pull out (in our case we’ve been asked the probability of a club or a seven so we’re going to mark all the clubs and all the sevens):
    • hearts: 2, 3, 4, 5, 6, 7, 8, 9, 10, j, q, k, A
    • clubs: 2, 3, 4, 5, 6, 7, 8, 9, 10, j, q, k, A
    • spades: 2, 3, 4, 5, 6, 7, 8, 9, 10, j, q, k, A
    • diamonds: 2, 3, 4, 5, 6, 7, 8, 9, 10, j, q, k, A

    This totals 16 cards. *

  • Step 2: Count the total number of cards in the deck(s). We have one deck, so the total = 52
  • Step 3: Write the answer as a fraction. Divide step 3 by Step 4:
    16 / 52

That’s it!


Tip: It isn’t as easy as just adding the number of sevens (4) and the number of clubs (13). If you did this for this example, you’d get 17 cards, not the correct answer of 16. The reason for this is that one of the cards in our example is both a club AND a number 7.

Probability of picking from a deck of cards: Using Excel

Watch the video for an overview and examples of using the hypergeometric distribution in Excel for card probabilities:

Excel Hypergeometric distribution to calculate card probabilities

Watch this video on YouTube.


Can’t see the video? Click here.

It gets a LOT more complex if you’re playing a card game, you have a certain number of cards in your hand, and you want to know your odds of getting a certain card if you are drawing a certain number of cards. You have to use something called a hypergeometric distribution to figure out the odds. The formula is: H (n) = C (X, n) * C (Y – X, Z – n) / C (Y, Z) Where: X is the number of a certain card in the deck Y is the total number of cards in the deck Z is the number of cards drawn

N is the number you are checking for

As you can see, the formula uses combinations and factorials —it can get a bit messy to do this by hand, so consider using technology like Excel. The command in Excel is: “=HYPGEOMDIST(N,Z,X,Y)”. For example, if you have a standard 52 card deck and draw 4 cards, what will be your chances of not drawing an ace? X is 4 Y is 52 Z is 4

N is 0 (as you want zero aces!)

the formula would be:
=HYPGEOMDIST(0,4,4,52) you will get the chance for not drawing the card.

Like the explanation? Check out the Practically Cheating Statistics Handbook, which has hundreds more step-by-step solutions, just like this one!

References

Beyer, W. H. CRC Standard Mathematical Tables, 31st ed. Boca Raton, FL: CRC Press, pp. 536 and 571, 2002.
Agresti A. (1990) Categorical Data Analysis. John Wiley and Sons, New York.
Kotz, S.; et al., eds. (2006), Encyclopedia of Statistical Sciences, Wiley.
Lindstrom, D. (2010). Schaum’s Easy Outline of Statistics, Second Edition (Schaum’s Easy Outlines) 2nd Edition. McGraw-Hill Education

---------------------------------------------------------------------------

What is the probability of randomly picking a Jack from a deck of 52 playing cards?
What is the probability of randomly picking a Jack from a deck of 52 playing cards?

Need help with a homework or test question? With Chegg Study, you can get step-by-step solutions to your questions from an expert in the field. Your first 30 minutes with a Chegg tutor is free!

Comments? Need to post a correction? Please Contact Us.


In order to continue enjoying our site, we ask that you confirm your identity as a human. Thank you very much for your cooperation.

Playing cards probability problems based on a well-shuffled deck of 52 cards.

Basic concept on drawing a card:

In a pack or deck of 52 playing cards, they are divided into 4 suits of 13 cards each i.e. spades ♠ hearts , diamonds , clubs .

Cards of Spades and clubs are black cards.

Cards of hearts and diamonds are red cards.

The card in each suit, are ace, king, queen, jack or knaves, 10, 9, 8, 7, 6, 5, 4, 3 and 2.

King, Queen and Jack (or Knaves) are face cards. So, there are 12 face cards in the deck of 52 playing cards.


Worked-out problems on Playing cards probability:

1. A card is drawn from a well shuffled pack of 52 cards. Find the probability of:

(i) ‘2’ of spades

(ii) a jack

(iii) a king of red colour

(iv) a card of diamond

(v) a king or a queen

(vi) a non-face card

(vii) a black face card

(viii) a black card

(ix) a non-ace

(x) non-face card of black colour

(xi) neither a spade nor a jack

(xii) neither a heart nor a red king

Solution:

In a playing card there are 52 cards.

Therefore the total number of possible outcomes = 52

(i) ‘2’ of spades:

Number of favourable outcomes i.e. ‘2’ of spades is 1 out of 52 cards.

Therefore, probability of getting ‘2’ of spade

               Number of favorable outcomes
P(A) =     Total number of possible outcome       = 1/52

(ii) a jack

Number of favourable outcomes i.e. ‘a jack’ is 4 out of 52 cards.

Therefore, probability of getting ‘a jack’

               Number of favorable outcomes
P(B) =     Total number of possible outcome       = 4/52       = 1/13

(iii) a king of red colour

Number of favourable outcomes i.e. ‘a king of red colour’ is 2 out of 52 cards.

Therefore, probability of getting ‘a king of red colour’

               Number of favorable outcomes
P(C) =     Total number of possible outcome       = 2/52       = 1/26

(iv) a card of diamond

Number of favourable outcomes i.e. ‘a card of diamond’ is 13 out of 52 cards.

Therefore, probability of getting ‘a card of diamond’

               Number of favorable outcomes
P(D) =     Total number of possible outcome       = 13/52       = 1/4

(v) a king or a queen

Total number of king is 4 out of 52 cards.

Total number of queen is 4 out of 52 cards

Number of favourable outcomes i.e. ‘a king or a queen’ is 4 + 4 = 8 out of 52 cards.

Therefore, probability of getting ‘a king or a queen’

               Number of favorable outcomes
P(E) =     Total number of possible outcome       = 8/52       = 2/13

(vi) a non-face card

Total number of face card out of 52 cards = 3 times 4 = 12

Total number of non-face card out of 52 cards = 52 - 12 = 40

Therefore, probability of getting ‘a non-face card’

               Number of favorable outcomes
P(F) =     Total number of possible outcome       = 40/52       = 10/13

(vii) a black face card:

Cards of Spades and Clubs are black cards.

Number of face card in spades (king, queen and jack or knaves) = 3

Number of face card in clubs (king, queen and jack or knaves) = 3

Therefore, total number of black face card out of 52 cards = 3 + 3 = 6

Therefore, probability of getting ‘a black face card’

               Number of favorable outcomes
P(G) =     Total number of possible outcome       = 6/52       = 3/26

(viii) a black card:

Cards of spades and clubs are black cards.

Number of spades = 13

Number of clubs = 13

Therefore, total number of black card out of 52 cards = 13 + 13 = 26

Therefore, probability of getting ‘a black card’

               Number of favorable outcomes
P(H) =     Total number of possible outcome       = 26/52       = 1/2

(ix) a non-ace:

Number of ace cards in each of four suits namely spades, hearts, diamonds and clubs = 1

Therefore, total number of ace cards out of 52 cards = 4

Thus, total number of non-ace cards out of 52 cards = 52 - 4

= 48

Therefore, probability of getting ‘a non-ace’

               Number of favorable outcomes
P(I) =     Total number of possible outcome       = 48/52       = 12/13

(x) non-face card of black colour:

Cards of spades and clubs are black cards.

Number of spades = 13

Number of clubs = 13

Therefore, total number of black card out of 52 cards = 13 + 13 = 26

Number of face cards in each suits namely spades and clubs = 3 + 3 = 6

Therefore, total number of non-face card of black colour out of 52 cards = 26 - 6 = 20

Therefore, probability of getting ‘non-face card of black colour’

               Number of favorable outcomes
P(J) =     Total number of possible outcome       = 20/52       = 5/13

(xi) neither a spade nor a jack

Number of spades = 13

Total number of non-spades out of 52 cards = 52 - 13 = 39

Number of jack out of 52 cards = 4

Number of jack in each of three suits namely hearts, diamonds and clubs = 3

[Since, 1 jack is already included in the 13 spades so, here we will take number of jacks is 3]

Neither a spade nor a jack = 39 - 3 = 36

Therefore, probability of getting ‘neither a spade nor a jack’

               Number of favorable outcomes
P(K) =     Total number of possible outcome       = 36/52       = 9/13

(xii) neither a heart nor a red king

Number of hearts = 13

Total number of non-hearts out of 52 cards = 52 - 13 = 39

Therefore, spades, clubs and diamonds are the 39 cards.

Cards of hearts and diamonds are red cards.

Number of red kings in red cards = 2

Therefore, neither a heart nor a red king = 39 - 1 = 38

[Since, 1 red king is already included in the 13 hearts so, here we will take number of red kings is 1]

Therefore, probability of getting ‘neither a heart nor a red king’

               Number of favorable outcomes
P(L) =     Total number of possible outcome       = 38/52       = 19/26

What is the probability of randomly picking a Jack from a deck of 52 playing cards?

2. A card is drawn at random from a well-shuffled pack of cards numbered 1 to 20. Find the probability of

(i) getting a number less than 7

(ii) getting a number divisible by 3.

Solution:

(i) Total number of possible outcomes = 20 ( since there are cards numbered 1, 2, 3, ..., 20).

Number of favourable outcomes for the event E

                                = number of cards showing less than 7 = 6 (namely 1, 2, 3, 4, 5, 6).

So, P(E) = \(\frac{\textrm{Number of Favourable Outcomes for the Event E}}{\textrm{Total Number of Possible Outcomes}}\)

             = \(\frac{6}{20}\)

             = \(\frac{3}{10}\).


(ii) Total number of possible outcomes = 20.

Number of favourable outcomes for the event F

                                = number of cards showing a number divisible by 3 = 6 (namely 3, 6, 9, 12, 15, 18).

So, P(F) = \(\frac{\textrm{Number of Favourable Outcomes for the Event F}}{\textrm{Total Number of Possible Outcomes}}\)

             = \(\frac{6}{20}\)

             = \(\frac{3}{10}\).


3. A card is drawn at random from a pack of 52 playing cards. Find the probability that the card drawn is 

(i) a king

(ii) neither a queen nor a jack.

Solution:

Total number of possible outcomes = 52 (As there are 52 different cards).

(i) Number of favourable outcomes for the event E = number of kings in the pack = 4.

So, by definition, P(E) = \(\frac{4}{52}\)

                                 = \(\frac{1}{13}\).


(ii) Number of favourable outcomes for the event F

                    = number of cards which are neither a queen nor a jack

                    = 52 - 4 - 4, [Since there are 4 queens and 4 jacks].

                    = 44

Therefore, by definition, P(F) = \(\frac{44}{52}\)

                                          = \(\frac{11}{13}\).

These are the basic problems on probability with playing cards.

  • What is the probability of randomly picking a Jack from a deck of 52 playing cards?

    Moving forward to the theoretical probability which is also known as classical probability or priori probability we will first discuss about collecting all possible outcomes and equally likely outcome. When an experiment is done at random we can collect all possible outcomes

  • What is the probability of randomly picking a Jack from a deck of 52 playing cards?

    In 10th grade worksheet on probability we will practice various types of problems based on definition of probability and the theoretical probability or classical probability. 1. Write down the total number of possible outcomes when the ball is drawn from a bag containing 5

  • What is the probability of randomly picking a Jack from a deck of 52 playing cards?

    Probability in everyday life, we come across statements such as: Most probably it will rain today. Chances are high that the prices of petrol will go up. I doubt that he will win the race. The words ‘most probably’, ‘chances’, ‘doubt’ etc., show the probability of occurrence

  • What is the probability of randomly picking a Jack from a deck of 52 playing cards?

    In math worksheet on playing cards we will solve various types of practice probability questions to find the probability when a card is drawn from a pack of 52 cards. 1. Write down the total number of possible outcomes when a card is drawn from a pack of 52 cards.

  • What is the probability of randomly picking a Jack from a deck of 52 playing cards?

    Practice different types of rolling dice probability questions like probability of rolling a die, probability for rolling two dice simultaneously and probability for rolling three dice simultaneously in rolling dice probability worksheet. 1. A die is thrown 350 times and the

Probability

Probability

Random Experiments

Experimental Probability

Events in Probability

Empirical Probability

Coin Toss Probability

Probability of Tossing Two Coins

Probability of Tossing Three Coins

Complimentary Events

Mutually Exclusive Events

Mutually Non-Exclusive Events

Conditional Probability

Theoretical Probability

Odds and Probability

Playing Cards Probability

Probability and Playing Cards

Probability for Rolling Two Dice

Solved Probability Problems

Probability for Rolling Three Dice

9th Grade Math

From Playing Cards Probability to HOME PAGE

Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.

Share this page: What’s this?