What is the first nursing intervention for a newborn with a 1 minute Apgar score of 7?

The Apgar score is a test given to newborns soon after birth. This test checks a baby's heart rate, muscle tone, and other signs to see if extra medical care or emergency care is needed.

Babies usually get the test twice: 1 minute after birth, and again 5 minutes after they're born. If there are concerns, a baby may get the test again.

What Does It Check?

The Apgar score measures five things to check a baby's health. Each is scored on a scale of 0 to 2, with 2 being the best score:

  1. Appearance (skin color)
  2. Pulse (heart rate)
  3. Grimace response (reflexes)
  4. Activity (muscle tone)
  5. Respiration (breathing rate and effort)

Doctors, midwives, or nurses add up these five factors for the Apgar score. Scores are between 10 and 0. Ten is the highest score possible, but few babies get it. That's because most babies' hands and feet remain blue until they have warmed up.

A baby who scores a 7 or above on the test is considered in good health. A lower score does not mean that your baby is unhealthy. It means that your baby may need some immediate medical care, such as suctioning of the airways or oxygen to help him or her breathe better. Perfectly healthy babies sometimes have a lower-than-usual score, especially in the first few minutes after birth.

A slightly low score (especially at 1 minute) is common, especially in babies born:

At 5 minutes after birth, babies get the test again. If a baby's score was low at first and isn't better, or there are other concerns, the doctors and nurses will continue any needed medical care. They'll watch the baby closely.

What if My Baby Has a Low Score?

Many babies with low scores are healthy and do just fine after getting used to life outside the womb.

If your doctor or midwife is concerned about your baby's score, they'll let you know and will explain how your baby is doing, what might be causing problems (if any), and what care is being given.

What Else Should I Know?

This test helps health care providers tell a newborn's overall physical condition so they can quickly decide if a baby needs medical care right away. It isn't meant to predict a baby's long-term health, behavior, intelligence, personality, or outcome.

With time to adjust to their new environment and with any needed medical care, most babies do very well.

  1. Iliodromiti S, Mackay DF, Smith GCS, Pell JP, Nelson SM. Apgar score and the risk of cause-specific infant mortality: a population-based cohort study. Lancet. 2014;384:1749–55.

    Article  PubMed  Google Scholar 

  2. Apgar V, Holaday DA, James LS, Weisbrot IM, Berrien C. Evaluation of the newborn infant; second report. J Am Med Assoc. 1958;168:1985–8.

    CAS  Article  PubMed  Google Scholar 

  3. Apgar V. A proposal for a new method of evaluation of the newborn infant. Curr Res Anesth Analg. 1953;32:260–7.

    CAS  Article  PubMed  Google Scholar 

  4. Laptook AR. Neonatal and infant death: the Apgar score reassessed. Lancet. 2014;384:1727–8.

    Article  PubMed  Google Scholar 

  5. American Academy of Pediatrics, Committee on Fetus and Newborn, American College of Obstetricians and Gynecologists, Committee on Obstetric Practice. The Apgar score. Pediatrics. 2006;117:1444–7.

    Article  Google Scholar 

  6. Kattwinkel J, Perlman JM, Aziz K, Colby C, Fairchild K, Gallagher J, et al. Neonatal resuscitation: 2010 American Heart Association Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care. Pediatrics. 2010;126:e1400–13.

    Article  PubMed  Google Scholar 

  7. Li F, Wu T, Lei X, Zhang H, Mao M, Zhang J. The Apgar Score and Infant Mortality. PLoS ONE [Internet]. 2013 [cited 2015 Mar 18];8. Available from: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3726736/. Accessed 03 Apr 2017.

  8. Vahabi S, Haidari M, Akbari Torkamani S, Gorbani VA. New assessment of relationship between Apgar score and early neonatal mortality. Minerva Pediatr. 2010;62:249–52.

    CAS  PubMed  Google Scholar 

  9. Sun Y, Vestergaard M, Pedersen CB, Christensen J, Olsen J. Apgar scores and long-term risk of epilepsy. Epidemiol Camb Mass. 2006;17:296–301.

    Article  Google Scholar 

  10. Casey BM, McIntire DD, Leveno KJ. The continuing value of the Apgar score for the assessment of newborn infants. N Engl J Med. 2001;344:467–71.

    CAS  Article  PubMed  Google Scholar 

  11. Mikkelsen C, International Working Group for Indigenous Affairs. The indigenous world 2014. Copenhagen: IWGIA; 2014.

    Google Scholar 

  12. Department of Statistic, Malaysia. Department of Statistics Malaysia Official Portal [Internet]. Malays Glance. 2015 [cited 2015 Aug 19]. Available from: https://www.statistics.gov.my/index.php?r=column/cone&menu_id=dDM2enNvM09oTGtQemZPVzRTWENmZz09. Accessed 03 Apr 2017.

  13. Jeganathan R, Karalasigam SD. Preliminary report of National Obstetrics Registry, Jan-December 2010. Kuala Lumpur: National Obstetrics Registry, Ministry of Health Malaysia; 2013.

    Google Scholar 

  14. Jeganathan R, Karalasingam SD. Preliminary report of the National Obstetrics Registry: July-December 2009. Kuala Lumpur: National Obstetrics Registry, Ministry of Health Malaysia; 2011. Report No.: MOH/S/CRC/18.11(AR).

    Google Scholar 

  15. Lie KK, Grøholt E-K, Eskild A. Association of cerebral palsy with Apgar score in low and normal birthweight infants: population based cohort study. BMJ. 2010;341:c4990.

    Article  PubMed  PubMed Central  Google Scholar 

  16. WHO Expert Consultation. Appropriate body-mass index for Asian populations and its implications for policy and intervention strategies. Lancet Lond Engl. 2004;363:157–63.

    Article  Google Scholar 

  17. R Core Team. R: A Language and Environment for Statistical Computing [Internet]. Vienna, Austria; 2017. Available from: http://www.R-project.org/. Accessed 03 Apr 2017.

  18. Reidpath DD, Karalasingam SD, Jeganathan R, Hussein J, Allotey P. Bivariate distribution of Apgar scores at 1 and 5 minutes. [Internet]. 2017. Available from: http://dx.doi.org/10.4225/03/55EFA4912544D

  19. Mongelli M, Rogers MS, Brieger GM. Obstetric determinants of low Apgar scores in a Chinese population. Int J Gynaecol Obstet Off Organ Int Fed Gynaecol Obstet. 1997;57:67–8.

    CAS  Article  Google Scholar 

  20. Kovavisarach E, Juntasom C. Risk factors of delivery of low apgar score newborn below 7 at 1 minute: a case–control study. J Med Assoc Thail Chotmaihet Thangphaet. 1999;82:660–5.

    CAS  Google Scholar 

  21. Haddad B, Mercer BM, Livingston JC, Sibai BM. Obstetric antecedents to apparent stillbirth (Apgar score zero at 1 minute only). Obstet Gynecol. 2001;97:961–4.

    CAS  PubMed  Google Scholar 

  22. Berglund S, Pettersson H, Cnattingius S, Grunewald C. How often is a low Apgar score the result of substandard care during labour? Bjog. 2010;117:968–78.

    Article  PubMed Central  Google Scholar 

  23. Johantgen M, Fountain L, Zangaro G, Newhouse R, Stanik-Hutt J, White K. Comparison of labor and delivery care provided by certified nurse-midwives and physicians: a systematic review, 1990 to 2008. Womens Health Issues Off Publ Jacobs Inst Womens Health. 2012;22:e73–81.

    Article  Google Scholar 

  24. Patel D, Piotrowski ZH, Nelson MR, Sabich R. Effect of a statewide neonatal resuscitation training program on Apgar scores among high-risk neonates in Illinois. Pediatrics. 2001;107:648–55.

    CAS  Article  PubMed  Google Scholar 

  25. Lavender T, Hofmeyr GJ, Neilson JP, Kingdon C, Gyte GM. Caesarean section for non-medical reasons at term. Cochrane Database Syst Rev. 2006;3:CD004660. https://www.ncbi.nlm.nih.gov/pubmed/16856054.

  26. Lavender T, Hofmeyr GJ, Neilson JP, Kingdon C, Gyte GM. Caesarean section for non-medical reasons at term. Cochrane Database Syst Rev. 2012;3:CD004660. https://www.ncbi.nlm.nih.gov/pubmed/22419296.

  27. Lamminpää R, Vehviläinen-Julkunen K, Gissler M, Selander T, Heinonen S. Pregnancy outcomes of overweight and obese women aged 35 years or older - A registry-based study in Finland. Obes Res Clin Pract. 2016;10(2):133-42.

  28. Thrift AP, Callaway LK. The effect of obesity on pregnancy outcomes among Australian indigenous and non-indigenous women. Med J Aust. 2014;201:592–5.

    Article  PubMed  Google Scholar 

  29. Avcı ME, Sanlıkan F, Celik M, Avcı A, Kocaer M, Göçmen A. Effects of maternal obesity on antenatal, perinatal and neonatal outcomes. J Matern-Fetal Neonatal Med Off J Eur Assoc Perinat Med Fed Asia Ocean Perinat Soc Int Soc Perinat Obstet. 2014;1–4.

  30. Persson M, Johansson S, Villamor E, Cnattingius S. Maternal overweight and obesity and risks of severe birth-asphyxia-related complications in term infants: a population-based cohort study in Sweden. PLoS Med. 2014;11:e1001648.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Vinturache AE, McDonald S, Slater D, Tough S. Perinatal outcomes of maternal overweight and obesity in term infants: a population-based cohort study in Canada. Sci Rep. 2015;5:9334.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Wielandt HB, Schønemann-Rigel H, Holst CB, Fenger-Grøn J. High risk of neonatal complications in children of mothers with gestational diabetes mellitus in their first pregnancy. Dan Med J. 2015;62(6).

  33. Du MY, Ma RM, Lao TT-H, Chen Z, Xiao H, Tian YQ, et al. Early third trimester maternal response to glucose challenge and pregnancy outcome in Chinese women-relationship between upper distribution level and recommended diagnostic criteria. Eur J Clin Nutr. 2015;69:1133–9.

    CAS  Article  PubMed  Google Scholar 

  34. Ovesen PG, Jensen DM, Damm P, Rasmussen S, Kesmodel US. Maternal and neonatal outcomes in pregnancies complicated by gestational diabetes. a nation-wide study. J Matern-Fetal Neonatal Med Off J Eur Assoc Perinat Med Fed Asia Ocean Perinat Soc Int Soc Perinat Obstet. 2015;28:1720–4.

    Google Scholar 

  35. Park S, Kim S-H. Women with rigorously managed overt diabetes during pregnancy do not experience adverse infant outcomes but do remain at serious risk of postpartum diabetes. Endocr J. 2015;62:319–27.

    CAS  Article  PubMed  Google Scholar 

  36. Blumenshine P, Egerter S, Barclay CJ, Cubbin C, Braveman PA. Socioeconomic disparities in adverse birth outcomes: a systematic review. Am J Prev Med. 2010;39:263–72.

    Article  PubMed  Google Scholar 

  37. Bryant AS, Worjoloh A, Caughey AB, Washington AE. Racial/ethnic disparities in obstetrical outcomes and care: prevalence and determinants. Am J Obstet Gynecol. 2010;202:335–43.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Sletner L, Rasmussen S, Jenum AK, Nakstad B, Jensen OHR, Vangen S. Ethnic differences in fetal size and growth in a multi-ethnic population. Early Hum Dev. 2015;91:547–54.

    Article  PubMed  Google Scholar 

  39. Fairley L, Petherick ES, Howe LD, Tilling K, Cameron N, Lawlor DA, et al. Describing differences in weight and length growth trajectories between white and Pakistani infants in the UK: analysis of the Born in Bradford birth cohort study using multilevel linear spline models. Arch Dis Child. 2013;98:274–9.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Wehby GL, Gili JA, Pawluk M, Castilla EE, López-Camelo JS. Disparities in birth weight and gestational age by ethnic ancestry in South American countries. Int J Public Health. 2015;60:343–51.

    Article  PubMed  Google Scholar 

  41. Bansal N, Chalmers J, Fischbacher C, Steiner M, Bhopal R. Ethnicity & first birth: age, smoking, delivery, gestation, weight & feeding: Scottish health & ethnicity linkage study. Eur J Public Health. 2014;24:910–5.

    Article  PubMed Central  Google Scholar 

  42. Penfield CA, Cheng YW, Caughey AB. Obstetric outcomes in adolescent pregnancies: a racial/ethnic comparison. J Matern-Fetal Neonatal Med Off J Eur Assoc Perinat Med Fed Asia Ocean Perinat Soc Int Soc Perinat Obstet. 2013;26:1430–4.

    Google Scholar 

  43. Flores MES, Simonsen SE, Manuck TA, Dyer JM, Turok DK. The “Latina epidemiologic paradox”: contrasting patterns of adverse birth outcomes in U.S.-born and foreign-born Latinas. Womens Health Issues Off Publ Jacobs Inst Womens Health. 2012;22:e501–7.

    Article  Google Scholar 

  44. Tarmiji Masron, Fujimaki Masami, Norhasimah Ismail. Orang Asli in Peninsular Malaysia : Population, Spatial Distribution and Socio-Economic Condition. J Ritsumeikan Soc Sci Humanit. 2013;6:75–115.

  45. Indra P, Jerker L, Martins JM, Rajapaksa LC, Craig L, de Silva A, et al. Investing in maternal health: learning from Malaysia and Sri Lanka. Washington D.C.: World Bank; 2003.

    Google Scholar 

  46. Economic Planning Unit, Prime Minister’s Department Malaysia. Official Website of Economic Planning Unit - Household Income & Poverty [Internet]. 2015 [cited 2015 Sep 16]. Available from: http://www.epu.gov.my/en/socio-economic/household-income-poverty. Accessed 03 Apr 2017.

  47. Allotey PA, Reidpath D. Information quality in a remote rural maternity unit in Ghana. Health Policy Plan. 2000;15:170–6.

    CAS  Article  PubMed  Google Scholar 

  48. DiGiuseppe DL, Aron DC, Ranbom L, Harper DL, Rosenthal GE. Reliability of birth certificate data: a multi-hospital comparison to medical records information. Matern Child Health J. 2002;6:169–79.

    Article  PubMed  Google Scholar 

  49. Carpenter J, Kenward M. Multiple Imputation and its Application. Chichester: John Wiley & Sons; 2013.

  50. O’Reilly GM, Cameron PA, Jolley DJ. Which patients have missing data? An analysis of missingness in a trauma registry. Injury. 2012;43:1917–23.

    Article  PubMed  Google Scholar 

  51. O’Reilly GM, Jolley DJ, Cameron PA, Gabbe B. Missing in action: a case study of the application of methods for dealing with missing data to trauma system benchmarking. Acad Emerg Med Off J Soc Acad Emerg Med. 2010;17:1122–9.

    Article  Google Scholar 

  52. Haddad B, Mercer BM, Livingston JC, Talati A, Sibai BM. Outcome after successful resuscitation of babies born with apgar scores of 0 at both 1 and 5 minutes. Am J Obstet Gynecol. 2000;182:1210–4.

    CAS  Article  PubMed  Google Scholar 

  53. Zehtabchi S, Nishijima DK, McKay MP, Mann NC. Trauma registries: history, logistics, limitations, and contributions to emergency medicine research. Acad Emerg Med Off J Soc Acad Emerg Med. 2011;18:637–43.

    Article  Google Scholar 

  54. Hailer NP. Orthopedic registry research — limitations and future perspectives. Acta Orthop. 2015;86:1–2.

    Article  PubMed  PubMed Central  Google Scholar 

  55. O’Donnell CPF, Kamlin COF, Davis PG, Carlin JB, Morley CJ. Interobserver variability of the 5-minute Apgar score. J Pediatr. 2006;149:486–9.

    Article  PubMed  Google Scholar 

  56. Rüdiger M, Küster H, Herting E, Berger A, Müller C, Urlesberger B, et al. Variations of Apgar score of very low birth weight infants in different neonatal intensive care units. Acta Paediatr Oslo Nor 1992. 2009;98:1433–6.

    Google Scholar 

  57. Bharti B, Bharti S. A review of the Apgar score indicated that contextualization was required within the contemporary perinatal and neonatal care framework in different settings. J Clin Epidemiol. 2005;58:121–9.

    Article  PubMed  Google Scholar 

  58. O’Donnell O, Doorslaer EV, Wagstaff A, Lindelow M. Analyzing health equity using household survey data: a guide to techniques and their implementation. Washington, D.C: World Bank; 2008.

    Google Scholar 


Page 2

Skip to main content

From: Factors associated with recovery from 1 minute Apgar score <4 in live, singleton, term births: an analysis of Malaysian National Obstetrics Registry data 2010–2012

  5 minute Apgar score
1 minute Apgar Score 0 1 2 3 4 5 6 7 8 9 10 Total
0 0 4 2 3 0 0 1 1 0 3 5 19
1 219 44 19 19 28 30 18 12 9 9 17 424
2 1 179 31 16 46 64 57 32 39 30 10 505
3 1 2 100 22 35 72 102 78 79 93 48 632
4 1 2 4 45 50 76 108 162 182 186 98 914
5 4 2 0 0 18 39 113 295 429 559 245 1,704
6 0 2 1 0 2 8 41 315 920 1,355 473 3,117
7 1 3 0 0 0 6 10 46 1,404 3,407 1,084 5,961
8 0 7 0 0 1 8 7 11 275 42,765 3,517 46,591
9 3 85 1 2 2 7 9 10 30 78,235 129,652 208,036
10 0 0 0 0 0 0 0 0 0 4 13 17
Total 230 330 158 107 182 310 466 962 3,367 126,646 135,162 267,920