The ________ project is a computerized library of human anatomy at the national library of medicine.

1. Swing EL, Gentile DA, Anderson CA, Walsh DA. Television and video game exposure and the development of attention problems. Pediatrics. 2010;126(2):214–221. [PubMed] [Google Scholar]

2. Christakis DA, Zimmerman FJ, DiGiuseppe DL, McCarty CA. Early television exposure and subsequent attentional problems in children. Pediatrics. 2004;113(4):708–713. [PubMed] [Google Scholar]

3. Moisala M, Salmela V, Hietajarvi L, et al Media multitasking is associated with distractibility and increased prefrontal activity in adolescents and young adults. NeuroImage. 2016;134:113–121. [PubMed] [Google Scholar]

4. Hoge E, Bickham D, Cantor J. Digital media, anxiety, and depression in children. Pediatrics. 2017;140(suppl 2):S76–S80. [PubMed] [Google Scholar]

5. Turkle S. New York, NY: Basic Books; 2011. Alone Together: Why We Expect More from Technology and Less from Each Other [Google Scholar]

6. Uncapher MR, Lin L, Rosen LD, et al Media multitasking and cognitive, psychological, neural, and learning differences. Pediatrics. 2017;140(suppl 2):S62–S66. [PMC free article] [PubMed] [Google Scholar]

7. Kerr M, Symons S. Computerized presentation of text: effects on children’s reading of informational material. Read Writ. 2006;19:1–19. [Google Scholar]

8. Mangen A, Walgermo B, Brønnick K. Reading linear texts on paper versus computer screen: effects on reading comprehension. Int J Educ Res. 2013;58:61–68. [Google Scholar]

9. Mangen A, Olivier G, Velay JL. Comparing comprehension of a long text read in print book and on Kindle: where in the text and when in the story? Front Psychol. 2019;10:38. [PMC free article] [PubMed] [Google Scholar]

10. Makin S. Searching for digital technology’s effects on well-being. Nature. 2018;563(7733):S138–S140. [PubMed] [Google Scholar]

11. Ophir E, Nass C, Wagner AD. Cognitive control in media multitaskers. Proc Natl Acad Sci U S A. 2009;106(37):15583–15587. [PMC free article] [PubMed] [Google Scholar]

12. Gindrat AD, Chytiris M, Balerna M, Rouiller EM, Ghosh A. Use-dependent cortical processing from fingertips in touchscreen phone users. Curr Biol. 2015;25(1):109–116. [PubMed] [Google Scholar]

13. Gindrat AD, Chytiris M, Balerna M, Rouiller EM, Ghosh A. Smartphone use shapes cortical tactile sensory processing from the fingertips [article in French] Med Sci (Paris) 2015;31(4):363–366. [PubMed] [Google Scholar]

14. Elbert T, Pantev C, Wienbruch C, Rockstroh B, Taub E. Increased cortical representation of the fingers of the left hand in string players. Science. 1995;270(5234):305–307. [PubMed] [Google Scholar]

15. Pantev C, Engelien A, Candia V, Elbert T. Representational cortex in musicians. Plastic alterations in response to musical practice. Ann N Y Acad Sci. 2001;930:300–314. [PubMed] [Google Scholar]

16. Byl NN, Merzenich MM, Jenkins WM. A primate genesis model of focal dystonia and repetitive strain injury: I. Learning-induced dedifferentiation of the representation of the hand in the primary somatosensory cortex in adult monkeys. Neurology. 1996;47:508 –520. [PubMed] [Google Scholar]

17. Webster EK, Martin CK, Staiano AE. Fundamental motor skills, screen-time, and physical activity in preschoolers. J Sport Health Sci. 2019;8(2):114–121. [PMC free article] [PubMed] [Google Scholar]

18. Gomez J, Barnett M, Grill-Spector K. Extensive childhood experience with Pokémon suggests eccentricity drives organization of visual cortex. Nat Hum Behav. 2019;3(6):611–624. [PMC free article] [PubMed] [Google Scholar]

19. Mishkin M, Ungerleider LG, Macko KA. Object vision and spatial vision: two cortical pathways. Trends Neurosci. 1983;6:414–417. [Google Scholar]

20. Carrier LM, Spradlin A, Bunce JP, Rosen LD. Virtual empathy: positive and negative impacts of going online upon empathy in young adults. Comput Human Behavr. 2015;52:39–48. [Google Scholar]

21. James C, Davis K, Charmaraman L, et al Digital life and youth well-being, social connectedness, empathy, and narcissism. Pediatrics. 2017;140(suppl 2):S71–S75. [PubMed] [Google Scholar]

22. Choudhury S, McKinney KA. Digital media, the developing brain and the interpretive plasticity of neuroplasticity. Transcult Psychiatry. 2013;50(2):192–215. [PubMed] [Google Scholar]

23. Lahiry S, Choudhury S, Chatterjee S, Hazra A. Impact of social media on academic performance and interpersonal relation: a cross-sectional study among students at a tertiary medical center in East India. J Educ Health Promot. 2019;8:73. [PMC free article] [PubMed] [Google Scholar]

24. Hutton JS, Dudley J, Horowitz-Kraus T, DeWitt T, Holland SK. Associations between home literacy environment, brain white matter integrity and cognitive abilities in preschool-age children. Acta Paediatr. 2019 December 18 doi: 10.1111/apa.15124. Epub ahead of print. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

25. Hutton JS, Dudley J, Horowitz-Kraus T, DeWitt T, Holland SK. Associations between screen-based media use and brain white matter integrity in preschool-aged children. JAMA Pediatr. 2019:e193869. [PMC free article] [PubMed] [Google Scholar]

26. Grosse Wiesmann C, Schreiber J, Singer T, Steinbeis N, Friederici AD. White matter maturation is associated with the emergence of Theory of Mind in early childhood. Nat Commun. 2017;8:14692. [PMC free article] [PubMed] [Google Scholar]

27. Skeide MA, Friederici AD. The ontogeny of the cortical language network. Nat Rev Neurosci. 2016 [PubMed] [Google Scholar]

28. Hutton JS, Dudley J, Horowitz-Kraus T, DeWitt T, Holland SK. Differences in functional brain network connectivity during stories presented in audio, illustrated, and animated format in preschool-age children. Brain Imaging Behav. 2020;14(1):130–141. [PubMed] [Google Scholar]

29. Wolf M, Ullman-Shade C, Gottwald S. The emerging, evolving reading brain in a digital culture: implications for new readers, children with reading difficulties, and children without schools. J Cogn Educ Psych. 11;3:230–240. [Google Scholar]

30. Pfeifer JH, Blakemore SJ. Adolescent social cognitive and affective neuroscience: past, present, and future. Soc Cogn Affect Neurosci. 2012;7(1):1–10. [PMC free article] [PubMed] [Google Scholar]

31. Kanai R, Bahrami B, Roylance R, Rees G. Online social network size is reflected in human brain structure. Proc Proc Biol Sci. 2012;279(1732):1327–1334. [PMC free article] [PubMed] [Google Scholar]

32. Meshi D, Tamir DI, Heekeren HR. The emerging neuroscience of social media. Trends Cogn Sci. 2015;19(12):771–782. [PubMed] [Google Scholar]

33. Crone EA, Konijn EA. Media use and brain development during adolescence. Nat Commun. 2018;9(1):588. [PMC free article] [PubMed] [Google Scholar]

34. Anderson CA, Shibuya A, Ihori N, et al Violent video game effects on aggression, empathy, and prosocial behavior in eastern and western countries: a meta-analytic review. Psychol Bull. 2010;136(2):151–173. [PubMed] [Google Scholar]

35. Korte M, Schmitz D. Cellular and system biology of memory: timing, molecules, and beyond. Physiol Rev. 2016;96(2):647–693. [PubMed] [Google Scholar]

36. Takeuchi T, Duszkiewicz AJ, Morris RG. The synaptic plasticity and memory hypothesis: encoding, storage and persistence. Philos Trans R Soc Lond B Biol Sci. 2014;369(1633):20130288. [PMC free article] [PubMed] [Google Scholar]

37. Engert F, Bonhoeffer T. Dendritic spine changes associated with hippocampal long-term synaptic plasticity [see comments] Nature. 1999;399(6731):66–70. [PubMed] [Google Scholar]

38. Yuste R, Bonhoeffer T. Morphological changes in dendritic spines associated with long-term synaptic plasticity. Ann Rev Neurosci. 2001;24:1071–1089. [PubMed] [Google Scholar]

39. Maguire EA, Gadian DG, Johnsrude IS, et al Navigation-related structural change in the hippocampi of taxi drivers [see comments] Proc Natl Acad Sci U S A. 2000;97(8):4398–4403. [PMC free article] [PubMed] [Google Scholar]

40. Draganski B, Gaser C, Busch V, Schuierer G, Bogdahn U, May A. Neuroplasticity: changes in grey matter induced by training. Nature. 2004;427(6972):311–312. [PubMed] [Google Scholar]

41. Hebb DO. New York, NY: Wiley; 1949. The Organization of Behavior. A Neuropsychological Theory [Google Scholar]

42. Katz LC, Shatz CJ. Synaptic activity and the construction of cortical circuits. Science. 1996;274(5290):1133–1138. [PubMed] [Google Scholar]

43. Martin SJ, Grimwood PD, Morris RG. Synaptic plasticity and memory: an evaluation of the hypothesis. Annu Rev Neurosci. 2000;23:649–711. [PubMed] [Google Scholar]

44. Kandel ER, Dudai Y, Mayford MR. The molecular and systems biology of memory. Cell. 2014;157(1):163–186. [PubMed] [Google Scholar]

45. Magee JC, Grienberger C. Synaptic plasticity forms and functions. Annu Rev Neurosci. 2020 February 19 doi: 10.1146/annurev-neuro-090919-022842. Epub ahead of print. [PubMed] [CrossRef] [Google Scholar]

46. Sajikumar S, Morris RG, Korte M, Competition between recently potentiated synaptic inputs reveals a winner-take-all phase of synaptic tagging and capture Proc Natl Acad Sci U S A. 2014;111(33):12217–12221. [PMC free article] [PubMed] [Google Scholar]

47. Cabeza R, Albert M, Belleville S, et al Maintenance, reserve and compensation: the cognitive neuroscience of healthy ageing. Nat Rev Neurosci. 2018;19(11):701–710. [PMC free article] [PubMed] [Google Scholar]

48. Kuhn S, Lorenz RC, Weichenberger M, et al Taking control! Structural and behavioural plasticity in response to game-based inhibition training in older adults. Neuroimage. 2017;156:199–206. [PubMed] [Google Scholar]

49. Kuhn S, Brass M, Gallinat J. Imitation and speech: commonalities within Broca’s area. Brain Struct Funct. 2013;218(6):1419–1427. [PubMed] [Google Scholar]

50. Klingberg T. Training and plasticity of working memory. Trends Cogn Sci. 2010;14(7):317–324. [PubMed] [Google Scholar]

51. Shah TM, Weinborn M, Verdile G, Sohrabi HR, Martins RN. Enhancing cognitive functioning in healthly older adults: a systematic review of the clinical significance of commercially available computerized cognitive training in preventing cognitive decline. Neuropsychol Rev. 2017;27(1):62–80. [PubMed] [Google Scholar]

52. Pallavicini F, Ferrari A, Mantovani F. Video games for well-being: a systematic review on the application of computer games for cognitive and emotional training in the adult population. Front Psychol. 2018;9:2127. [PMC free article] [PubMed] [Google Scholar]

53. Katz B, Shah P, Meyer DE. How to play 20 questions with nature and lose: reflections on 100 years of brain-training research. Proc Natl Acad Sci U S A. 2018;115(40):9897–9904. [PMC free article] [PubMed] [Google Scholar]

54. Brand M, Young KS, Laier C, Wolfling K, Potenza MN. Integrating psychological and neurobiological considerations regarding the development and maintenance of specific Internet-use disorders: an Interaction of Person-Affect-Cognition-Execution (I-PACE) model. Neurosci Biobehav Rev. 2016;71:252–266. [PubMed] [Google Scholar]

55. Rehbein F, Kliem S, Baier D, Mossle T, Petry NM. Prevalence of Internet gaming disorder in German adolescents: diagnostic contribution of the nine DSM-5 criteria in a state-wide representative sample. Addiction. 2015;110(5):842–851. [PubMed] [Google Scholar]

56. Yao YW, Liu L, Ma SS, et al Functional and structural neural alterations in Internet gaming disorder: a systematic review and meta-analysis. Neurosci Biobehav Rev. 2017;83:313–324. [PubMed] [Google Scholar]

57. D’Hondt F, Billieux J, Maurage P. Electrophysiological correlates of problematic Internet use: critical review and perspectives for future research. Neurosci Biobehav Rev. 2015;59:64–82. [PubMed] [Google Scholar]

58. He Q, Turel O, Bechara A. Brain anatomy alterations associated with Social Networking Site (SNS) addiction. Sci Rep. 2017;7:45064. [PMC free article] [PubMed] [Google Scholar]

59. Nicolelis MAL. Are we at risk of becoming biological digital machines? Nat Human Behav. 2017;1(1):0008. [Google Scholar]

60. Widge AS, Zorowitz S, Basu I, et al Deep brain stimulation of the internal capsule enhances human cognitive control and prefrontal cortex function. Nat Commun. 2019;10(1):1536. [PMC free article] [PubMed] [Google Scholar]

61. Polania R, Nitsche MA, Ruff CC. Studying and modifying brain function with non-invasive brain stimulation. Nat Neurosci. 2018;21(2):174–187. [PubMed] [Google Scholar]

62. Lozano AM, Lipsman N, Bergman H, et al Deep brain stimulation: current challenges and future directions. Nat Rev Neurol. 2019;15(3):148–160. [PMC free article] [PubMed] [Google Scholar]

63. Carmena JM, Lebedev MA, Crist RE, et al Learning to control a brain-machine interface for reaching and grasping by primates. PLoS Biol. 2003;1(2):E42. [PMC free article] [PubMed] [Google Scholar]

64. Shokur S, Gallo S, Moioli RC, et al Assimilation of virtual legs and perception of floor texture by complete paraplegic patients receiving artificial tactile feedback. Sci Rep. 2016;6:32293. [PMC free article] [PubMed] [Google Scholar]

65. Carr N. New York, NY: W. W. Norton & Co; 2014. The Glass Cage. Automation and Us [Google Scholar]

66. Sparrow B, Liu J, Wegner DM. Google effects on memory: cognitive consequences of having information at our fingertips. Science. 2011;333(6043):776–778. [PubMed] [Google Scholar]

67. Brown TI, Uncapher MR, Chow TE, Eberhardt JL, Wagner AD. Cognitive control, attention, and the other race effect in memory. PloS ONE. 2017;12(3):e0173579. [PMC free article] [PubMed] [Google Scholar]

68. Dunbar RIM. The anatomy of friendship. Trends Cogn Sci. 2018;22(1):32–51. [PubMed] [Google Scholar]

69. Reeves B, Robinson T, Ram N. Time for the Human Screenome Project. Nature. 2020;577(7790):314–317. [PubMed] [Google Scholar]

70. Ram N, Yang X, Cho M-J, et al Screenomics: a new approach for observing and studying individuals’ digital lives. J Adolesc Res. 2019;35(1):16–50. [PMC free article] [PubMed] [Google Scholar]

71. Gijsen V, Maddux M, Lavertu A, et al #Science: the potential and the challenges of utilizing social media and other electronic communication platforms in health care. Clin Transl Sci. 2020;13(1):26–30. [PMC free article] [PubMed] [Google Scholar]


Page 2

The ________ project is a computerized library of human anatomy at the national library of medicine.

Diffusion tensor magnetic resonance imaging of brain in preschoolers, showing associations between use of
screen-based media and white-matter integrity. White-matter voxels exhibit a statistically significant correlation between ScreenQ scores (which indicate screen-based media use, ie, how intensive digital media have been used) and lower fractional anisotropy (FA; A), as well as higher radial diffusivity (RD; B); both indicate fiber tract in the analysis of whole-brain images. All data were controlled for household income level and child age (P > 0.05, familywise error–corrected). The color code
depicts the magnitude or slope of correlation (change in the diffusion tensor imaging parameter for every point increase in ScreenQ score). Adapted from ref 24: Hutton JS, Dudley J, Horowitz-Kraus T, DeWitt T, Holland SK. Associations between screen-based media use and brain white matter integrity in preschool-aged children. JAMA Pediatr. 2019;e193869.
doi:10.1001/jamapediatrics.2019.3869. Copyright © American Medical Association 2019.

  • The ________ project is a computerized library of human anatomy at the national library of medicine.
  • The ________ project is a computerized library of human anatomy at the national library of medicine.

Click on the image to see a larger version.