Senyawa berikut yang tidak termasuk senyawa oksidator adalah

Bagi kalian yang sudah kelas 10 MIA pasti sudah pernah dengar tentang apa itu reaksi redoks, kan? Hayoo masih inget, nggak?

Coba Sobat Pintar perhatikan fenomena gambar di atas. Pada gambar tersebut, kita bisa melihat sebuah apel yang sedang mengalami proses pembusukan. Dalam proses kimia, reaksi pembusukan apel tersebut terjadi karena adanya sebuah reaksi yang menyertainya, yaitu reaksi redoks.

Yuk Sobat, kita simak apa sih itu reaksi redoks.

Reaksi Redoks

Apa itu reaksi redoks? Reaksi redoks adalah singkatan dari reaksi reduksi dan oksidasi yang berlangsung pada proses elektrokimia. Boleh dibilang, reaksi redoks adalah singkatan dari reaksi reduksi dan oksidasi. Berikut pengertian dari kedua istilah tersebut.

Pengertian Reduksi

Reduksi adalah reaksi yang mengalami penurunan bilangan oksidasi dan kenaikan elektron. Dapat dikatakan bahwa reduksi adalah reaksi dimana suatu zat kehilangan oksigen.

Pengertian Oksidasi

Oksidasi adalah reaksi yang mengalami peningkatan bilangan oksidasi dan penurunan elektron. Dapat dikatakan bahwa oksidasi adalah reaksi dimana suatu zat mengikat oksigen.

Perhatikan contoh reaksi berikut ini:

Bagaimana penjelasan reaksi oksidasi dan reduksi pada contoh di atas? Besi (III) oksida (Fe2O3) mengalami reduksi karena kehilangan atom oksigen dan berubah menjadi besi (2Fe). Adapun karbon monoksida (3CO) mengalami reaksi oksidasi karena mengikat atom oksigen dan berubah menjadi karbon dioksida (3CO2).

Konsep Bilangan Oksidasi

Konsep reaksi redoks yang melibatkan perpindahan elektron ini hanya bisa terjadi pada senyawa ionikaja, sedangkan senyawa kovalen tidak. Oleh karena itu, muncul konsep redoks yang ketiga, yaitu berdasarkan perubahan bilangan oksidasi (biloks).

Bilangan oksidasiadalah muatan positif dan negatif pada suatu atom. Unsur yang biloksnya positif, biasanya merupakan atom-atom unsur logam, seperti Na, Fe, Mg, Ca, dan unsur logam lainnya. Sementara itu, unsur yang biloksnya negatif, biasanya atom-atom unsur nonlogam, seperti O, Cl, F, dan unsur nonlogam lainnya.

Berdasarkan konsep perubahan bilangan oksidasi,reaksi reduksiadalah reaksi yang mengalami penurunan bilangan oksidasi. Sedangkanreaksi oksidasiadalah reaksi yang mengalami kenaikan bilangan oksidasi.

Terdapat delapan aturan dalam menentukan bilangan oksidasi suatu atom yang harus Sobat ketahui, antara lain adalah sebagai berikut.

1. Bilangan oksidasi unsur bebas dalam bentuk atom dan molekul adalah 0.

Contoh: bebas berbentuk atom
C, Ca, Cu, Na, Fe, Al, Ne = 0

Contoh: bebas berbentuk molekul
H2, O2, Cl2, P4, S8 = 0

2. Bilangan oksidasi ion monoatom (1 atom) dan poliatom (lebih dari 1 atom) sesuai dengan jenis muatan ionnya.

Contoh:
Bilangan oksidasi ion monoatom Na+, Mg2+, dan Al3+berturut-turut adalah +1, +2, dan +3.
Bilangan oksidasi ion poliatom NH4+, SO42-, dan PO43-berturut-turut adalah +1, -2, dan -3.

3. Bilangan oksidasi unsur pada golongan logam IA, IIA, dan IIIA sesuai dengan golongannya.

IA = H, Li, Na, K, Rb, Cs, Fr = +1.
Contoh:Bilangan oksidasi Na dalam senyawa NaCl adalah +1.

IIA = Be, Mg, Ca, Sr, Ba, Ra = +2.
Contoh:Bilangan oksidasi Mg dalam senyawa MgSO2adalah +2.

IIIA = B, Al, Ga, In, Tl = +3
Contoh:Bilangan oksidasi Al dalam senyawa Al2O3adalah +3.

4. Bilangan oksidasi unsur golongan transisi (golongan B) lebih dari satu.

Contoh:
Bilangan oksidasi Cu = +1 dan +2.
Bilangan oksidasi Au = +1 dan +3.
Bilangan oksidasi Sn = +3 dan +4.

5. Jumlah bilangan oksidasi unsur-unsur yang membentuk ion = jumlah muatannya.

Contoh:
NH4+= +1

6. Jumlah bilangan oksidasi unsur-unsur yang membentuk senyawa = 0.

Contoh:
H2O = 0

7. Bilangan oksidasi hidrogen (H) bila berikatan dengan logam = -1. Bila H berikatan dengan non-logam = +1.

Contoh:
Biloks H dalam AlH3= -1.

8. Bilangan oksidasi oksigen (O) dalam senyawa proksida = -1. Bilangan oksidasi O dalam senyawa non-peroksida = -2.

Contoh:
Biloks O dalam BaO2= -1.

Menentukan Reaksi Reduksi dan Oksidasi Berdasarkan Konsep Kenaikan dan Penurunan Bilangan Oksidasi

Pada reaksi redoks, terdapat unsur-unsur yang bertindak sebagai reduktor dan oksidator. Zat yang mengalami oksidasi itu disebutreduktor, sedangkan zat yang mengalami reduksi disebutoksidator.

Coba perhatikan contoh berikut ini!

Reaksi: Mg(s) + 2HCl ----> MgCl2(aq) + H2(g)

Karena Mg merupakan unsur bebas, jadi biloks Mg = 0. Kemudian, biloks H pada senyawa 2HCl bernilai +1 karena unsur H berikatan dengan unsur lain dan H merupakan golongan IA. Selanjutnya, karena H = +1, berarti Cl = -1 agar total biloks 2HCl = 0.

Di ruas sebelah kanan, biloks Mg pada senyawa MgCl adalah +2 karena Mg berikatan dan merupakan unsur golongan IIA. Karena Cl memiliki indeks 2, maka biloks Cl = -1, agar total biloks MgCl2= 0. Kemudian, karena H2merupakan unsur bebas, maka biloksnya bernilai 0. Unsur Mg mengalami kenaikan biloks dari 0 ke +2, sehingga mengalami reaksi oksidasi. Jadi, unsur Mg disebut sebagai reduktor. Sementara itu, unsur H mengalami penurunan biloks dari +1 ke 0, sehingga mengalami reaksi reduksi. Jadi, HCl disebut sebagai oksidator.

Sobat Pintar jangan lupa download aplikasi Aku Pintar di Play Store atau App Store, ya! Ada fitur Belajar Pintar yang bakal nemenin Sobat belajar di rumah. Simak juga artikel-artikel lainnya, yaa!

Writer: Muhammad Fahmi Ridlo

Editor: Deni Purbowati

Halaman ini berisi artikel tentang zat pengoksidasi (oksidator). Untuk reaksi oksidasi-reduksi, lihat Redoks.

Dalam kimia, zat pengoksidasi, dalam bahasa Indonesia lebih dikenal sebagai oksidator, memiliki dua makna. Pengertian pertama, oksidator adalah spesies kimia yang menghilangkan elektron dari spesies lainnya. Ini adalah salah satu komponen dalam reaksi oksidasi-reduksi (redoks). Pengertian lainnya, oksidator adalah spesies kimia yang memindahkan atom elektronegatif, biasanya oksigen, ke dalam substrat. Pembakaran, ledakan pada umumnya, dan reaksi redoks organik melibatkan reaksi perpindahan atom.

Piktogram internasional untuk bahan kimia pengoksidasi (oksidator).

Label bahan berbahaya untuk oksidator

Akseptor (penerima) elektron berpartisipasi dalam reaksi transfer elektron. Dalam konteks ini, oksidator disebut sebagai akseptor elektron dan zat pereduksi (dalam bahasa Indonesia lebih dikenal sebagai reduktor) disebut sebagai donor (penyumbang) elektron. Oksidator klasik adalah ion ferosenium [Fe(C5H5)2]+, yang menerima sebuah elektron untuk membentuk Fe(C5H5)2.[1]

 

Tetrasianokuinodimetana adalah akseptor elektron organik.

Telah tersedia tabulasi pemeringkatan sifat akseptor elektron berbagai pereaksi (potensial redoks), lihat Potensial standar elektrode (laman data).

Mekanisme

Hal yang menarik bagi para kimiawan adalah detail kejadian transfer elektron, yang dapat dijelaskan sebagai sferis dalam atau sferis luar.

Dalam penggunaan yang umum, oksidator memindahkan atom oksigen kepada substrat. Dalam konteks ini, oksidator dapat disebut sebagai pereaksi oksigenasi atau agen pemindah atom oksigen (oxygen-atom transfer (OAT) agent).[2] Contohnya antara lain [MnO4]− (permanganat), [CrO4]2− (kromat), OsO4 (osmium tetroksida), dan terutama [ClO4]− (perklorat). Perlu diperhatikan bahwa spesies ini semuanya adalah oksida.

Dalam beberapa kasus, oksida-oksida ini juga bertindak selaku akseptor elektron, sebagaimana digambarkan dalam konversi [MnO4]− menjadi [MnO4]2− manganat.

Oksidator yang umum (agen pemindah atom O)

  • Oksigen (O2)
  • Ozon (O3)
  • Hidrogen peroksida (H2O2) dan peroksida anorganik lainnya
  • Fluorin (F2), klorin (Cl2), dan halogen lainnya
  • Asam nitrat (HNO3) dan senyawa nitrat
  • Asam sulfat (H2SO4)
  • Asam peroksidisulfat (H2S2O8)
  • Asam peroksimonosulfat (H2SO5)
  • Klorit, klorat, perklorat, dan senyawa halogen sejenis lainnya
  • Hipoklorit dan senyawa hipohalit lainnya, termasuk pemutih rumah tangga (NaClO)
  • Senayawa krom heksavalen seperti asam kromat dan dikromat serta kromium trioksida, piridinium klorokromat (PCC), dan senyawa kromat/dikromat
  • Senyawa permanganat seperti kalium permanganat
  • Natrium perborat
  • Dinitrogen monoksida (N2O)
  • Kalium nitrat (KNO3), oksidator dalam serbuk hitam

Definisi bahan berbahaya oksidator adalah zat yang dapat menyebabkan, atau berkontribusi pada, pembakaran bahan lain.[3] Berdasarkan definisi ini, beberapa material yang dikelompokkan sebagai oksidator oleh praktisi dan akademisi kimia analitik tidak diklasifikasikan sebagai oksidator dalam cakupan bahan berbahaya. Sebagai contoh kalium dikromat, yang tidak lolos uji sebagai kelompok bahan berbahaya kelompok oksidator.

Departemen Transportasi Amerika Serikat (Department of Transport, DOT) mendefinisikan oksidator secara lebih spesifik. Terdapat dua definisi untuk oksidator yang diatur dalam regulasi DOT. Mereka adalah Kelas 5; Divisi 5.1 dan Kelas 5; Divisi 5.2. Divisi 5.1 "adalah material apapun, biasanya melepaskan oksigen, yang menyebabkan atau memperbesar pembakaran bahan lain." Divisi 5.1 DOT untuk oksidator padat "jika, ketika diuji sesuai dengan UN Manual of Tests and Criteria (IBR, lihat § 171.7 dalam sub-bab ini), berarti waktu pembakarannya kurang dari atau sama dengan waktu pembakaran campuran kalium bromat/selulosa." Divisi 5.1 DOT untuk oksidator cair "jika, ketika diuji sesuai dengan UN Manual of Tests and Criteria, ia menyala secara spontan atau waktu peningkatan tekanan dari 690 kPa menjadi 2070 kPa gauge kurang dari waktu peningkatan tekanan campuran asam nitrat (65%): selulosa (1:1)."[4]

Oksidator Produk
O2 oksigen Bervariasi, termasuk oksida H2O dan CO2
O3 ozon Bervariasi, termasuk keton, aldehida, dan H2O; lihat ozonolisis
F2 fluor F−
Cl2 klorin Cl−
Br2 bromin Br−
I2 iodin I−, I3
ClO− hipoklorit Cl−, H2O
ClO3 klorat Cl−, H2O
HNO3 asam nitrat NO nitrogen monoksida
NO2 nitrogen dioksida
Krom heksavalen
CrO3 kromium trioksida
CrO2−4 kromat
Cr2O2−7 dikromat
Cr3+, H2O
MnO4 permanganat
MnO2−4 manganat
Mn2+ (suasana asam) atau MnO2 (suasana basa)
H2O2, peroksida lainnya Bervariasi, termasuk oksida dan H2O
  • Zat pewarna
  • Elektrosintesis
  • Oksidasi organik
  • Reaksi redoks organik
  • Reduktor
  • Redoks

  1. ^ N. G. Connelly, W. E. Geiger (1996). "Chemical Redox Agents for Organometallic Chemistry". Chemical Reviews. 96 (2): 877–910. doi:10.1021/cr940053x. PMID 11848774. 
  2. ^ Smith, Michael B.; March, Jerry (2007), Advanced Organic Chemistry: Reactions, Mechanisms, and Structure (edisi ke-6th), New York: Wiley-Interscience, ISBN 0-471-72091-7 Pemeliharaan CS1: Banyak nama: authors list (link)
  3. ^ Australian Dangerous Goods Code, 6th Edition
  4. ^ 49 CFR 172.127 General Requirements for Shipments and Packagings; Subpart D

Diperoleh dari "//id.wikipedia.org/w/index.php?title=Oksidator&oldid=16804915"

Video yang berhubungan

Postingan terbaru

LIHAT SEMUA