If direction ratios of two lines are 5, -12, 13 and -3, 4, 5, then the angle between them is

The direction-ratios of the two lines are 5, – 12, 13 and – 3, 4, 5.Let θ be the angle between the lines.

If direction ratios of two lines are 5, -12, 13 and -3, 4, 5, then the angle between them is

Uh-Oh! That’s all you get for now.

We would love to personalise your learning journey. Sign Up to explore more.

Sign Up or Login

Skip for now

Uh-Oh! That’s all you get for now.

We would love to personalise your learning journey. Sign Up to explore more.

Sign Up or Login

Skip for now

Answer

If direction ratios of two lines are 5, -12, 13 and -3, 4, 5, then the angle between them is
Verified

Hint: Determine the line vectors using the direction ratios, we know for the vector $\overrightarrow{r}=a\overset{\hat{\ }}{\mathop{i}}\,+b\overset{\wedge }{\mathop{j}}\,+c\overset{\wedge }{\mathop{k}}\,$, the direction ratios are (a, b, c) and the proportionality given in the question, then find their scalar product.

Complete step-by-step answer:

Let us assume the line vector with direction ratios 4, -3, 5 to be $\overrightarrow{a}$.Then, $\overrightarrow{a}=4\overset{\hat{\ }}{\mathop{i}}\,-3\overset{\wedge }{\mathop{j}}\,+5\overset{\wedge }{\mathop{k}}\,$.Let us assume the line vector with direction ratios 3, 4, 5 to be $\overrightarrow{b}$.Therefore, the x component is 3.Therefore, the y component is 4.Therefore, the z component is 5.Then, $\overrightarrow{b}=3\overset{\hat{\ }}{\mathop{i}}\,+4\overset{\wedge }{\mathop{j}}\,+5\overset{\wedge }{\mathop{k}}\,$.We know that the scalar product of $\overrightarrow{x}\ and\ \overrightarrow{y}$is$\overrightarrow{x}.\overrightarrow{y}=\left| \overrightarrow{x} \right|\left| \overrightarrow{y} \right|\cos \theta $,Where $\overrightarrow{x}\ and\ \overrightarrow{y}$ are the magnitudes of $\overrightarrow{x}\ and\ \overrightarrow{y}$ respectively and $\theta $ is the angle between $\overrightarrow{x}\ and\ \overrightarrow{y}$.Let us assume the angle between $\overrightarrow{a}$ and $\overrightarrow{b}$ i.e. the two given line to be $\phi $, then$\left( \overrightarrow{a}.\overrightarrow{b} \right)=\left| \overrightarrow{a} \right|\left| \overrightarrow{b} \right|\cos \phi $This can also be written as,$\cos \phi =\dfrac{\overrightarrow{a}.\overrightarrow{b}}{\left| \overrightarrow{a} \right|\left| \overrightarrow{b} \right|}..........(i)$Now we will find the values separately,$\begin{align}  & \left| \overrightarrow{a} \right|=\sqrt{{{4}^{2}}+{{\left( -3 \right)}^{2}}+{{5}^{2}}}=\sqrt{50}=5\sqrt{2} \\  & \left| \overrightarrow{b} \right|=\sqrt{{{3}^{2}}+{{4}^{2}}+{{5}^{2}}}=\sqrt{50}=5\sqrt{2} \\ \end{align}$Substituting these values in equation (i), we get$\begin{align}  & \cos \phi =\dfrac{\overrightarrow{a}.\overrightarrow{b}}{\left| \overrightarrow{a} \right|\left| \overrightarrow{b} \right|} \\  & \Rightarrow \cos \phi =\dfrac{\left( 4\overset{\hat{\ }}{\mathop{i}}\,-3\overset{\wedge }{\mathop{j}}\,+5\overset{\wedge }{\mathop{k}}\, \right)\left( 3\overset{\hat{\ }}{\mathop{i}}\,+4\overset{\wedge }{\mathop{j}}\,+5\overset{\wedge }{\mathop{k}}\, \right)}{5\sqrt{2}\times 5\sqrt{2}} \\  & \Rightarrow \cos \phi =\dfrac{4\times 3-3\times 4+5\times 5}{50} \\  & \Rightarrow \cos \phi =\dfrac{25}{50} \\  & \Rightarrow \cos \phi =\dfrac{1}{2} \\ \end{align}$Therefore,$\phi ={{\cos }^{-1}}\dfrac{1}{2}$$\phi =\dfrac{\pi }{3}$Therefore, the angle between the two lines is $\dfrac{\pi }{3}$.

Note:Another approach to find the angle between two lines is by first finding the unit vectors of the given lines by using the formula $\overset{\wedge }{\mathop{a}}\,=\dfrac{\overrightarrow{a}}{\left| \overrightarrow{a} \right|}$. And the angle between two unit vector is given by $\cos \phi =\overset{\wedge }{\mathop{a}}\,.\overset{\wedge }{\mathop{b}}\,$

Tardigrade - CET NEET JEE Exam App

© 2022 Tardigrade®. All rights reserved

Find the acute angle between the lines whose direction ratios are 5, 12, -13 and 3, - 4, 5.

`cos theta=|(a_1a_2+b_1b_2+c_1c_2)/(sqrt(a_1^2+b_1^2+c_1^2)sqrt(a_2^2+b_2^2+c_2^2))|`

`=|(15-48-65)/(sqrt(25+144+169)sqrt(9+16+25))|`

`=|-98/(13sqrt2xx5sqrt2)|`

`=|-98/(13xx5xx2)|`

`=49/65`

`theta=cos^-1 (49/65)`

Concept: Angle Between Two Lines

  Is there an error in this question or solution?