When two chemicals together have an effect that is greater than the sum of their individual effects then they are said to work in an mode?

  1. Frische T, Egerer S, Matezki S et al (2018) 5-Point programme for sustainable plant protection. Environ Sci Eur. https://doi.org/10.1186/s12302-018-0136-2

    Article  Google Scholar 

  2. Schäfer RB, Liess M, Altenburger R et al (2019) Future pesticide risk assessment: narrowing the gap between intention and reality. Environ Sci Eur 31:21. https://doi.org/10.1186/s12302-019-0203-3

    Article  Google Scholar 

  3. Loewe S, Muischnek H (1926) Über Kombinationswirkungen 1. Mitteilung: Hilfsmittel der Fragestellung. In: Naunyn-Schmiedebergs Arch Exp Pathol Pharmakol. pp 313–326

  4. Altenburger R, Backhaus T, Boedeker W et al (2000) Predictability of the toxicity of multiple chemical mixtures to Vibrio fischeri: mixtures composed of similarly acting chemicals. Environ Toxicol Chem. https://doi.org/10.1002/etc.5620190926

    Article  Google Scholar 

  5. Bliss CI (1939) The toxicity of poisons applied jointly. Ann Appl Biol 26:585–615

    Article  CAS  Google Scholar 

  6. Belden JB, Gilliom RJ, Lydy MJ (2007) How well can we predict the toxicity of pesticide mixtures to aquatic life? Integr Environ Assess Manag 3:364–372. https://doi.org/10.1897/1551-3793(2007)3[364:HWCWPT]2.0.CO;2

    Article  CAS  Google Scholar 

  7. Faust M, Altenburger R, Backhaus T et al (2003) Joint algal toxicity of 16 dissimilarly acting chemicals is predictable by the concept of independent action. Aquat Toxicol. https://doi.org/10.1016/S0166-445X(02)00133-9

    Article  Google Scholar 

  8. Backhaus T, Arrhenius A, Blanck H (2004) Toxicity of a mixture of dissimilarly acting substances to natural algal communities: Predictive power and limitations of independent action and concentration addition. Environ Sci Technol 38:6363–6370. https://doi.org/10.1021/es0497678|ISSN0013-936X

    Article  CAS  Google Scholar 

  9. Schäfer RB, Piggott JJ (2018) Advancing understanding and prediction in multiple stressor research through a mechanistic basis for null models. Glob Chang Biol 24:1817–1826. https://doi.org/10.1111/gcb.14073

    Article  Google Scholar 

  10. Thompson HM (1996) Interactions between pesticides; a review of reported effects and their implications for wildlife risk assessment. Ecotoxicology 5:59–81. https://doi.org/10.1007/BF00119047

    Article  CAS  Google Scholar 

  11. Meled M, Thrasyvoulou A, Belzunces LP (1998) Seasonal variation in susceptibility of Apis mellifera to the synergistic action of prochloraz and deltamethrin. Environ Toxicol Chem. https://doi.org/10.1897/1551-5028(1998)017<2517:svisoa>2.3.co;2

    Article  Google Scholar 

  12. Schmuck R, Stadler T, Schmidt HW (2003) Field relevance of a synergistic effect observed in the laboratory between an EBI fungicide and a chloronicotinyl insecticide in the honeybee (Apis mellifera L, Hymenoptera. Pest Manag Sci. https://doi.org/10.1002/ps.626

    Article  Google Scholar 

  13. Teper D, Sgolastra F, Bosch J et al (2018) Combined exposure to sublethal concentrations of an insecticide and a fungicide affect feeding, ovary development and longevity in a solitary bee. Proc R Soc B Biol Sci 285:20180887. https://doi.org/10.1098/rspb.2018.0887

    Article  CAS  Google Scholar 

  14. Cedergreen N, Kamper A, Streibig JC (2006) Is prochloraz a potent synergist across aquatic species? A study on bacteria, daphnia, algae and higher plants. Aquat Toxicol 78:243–252. https://doi.org/10.1016/j.aquatox.2006.03.007

    Article  CAS  Google Scholar 

  15. Shahid N, Liess M, Knillmann S (2019) Environmental stress increases synergistic effects of pesticide mixtures on Daphnia magna. Environ Sci Technol 53:12586–12593. https://doi.org/10.1021/acs.est.9b04293

    Article  CAS  Google Scholar 

  16. Cedergreen N (2014) Quantifying synergy: a systematic review of mixture toxicity studies within environmental toxicology. PLoS ONE 9:96580. https://doi.org/10.1371/journal.pone.0096580

    Article  CAS  Google Scholar 

  17. Liess M, Champeau O, Riddle M et al (2001) Combined effects of ultraviolet-B radiation and food shortage on the sensitivity of the Antarctic amphipod Paramoera walkeri to copper. Environ Toxicol Chem 20:2088–2092

    Article  CAS  Google Scholar 

  18. Liess M, Henz S, Knillmann S (2019) Predicting low-concentration effects of pesticides. Sci Rep 9:1–9. https://doi.org/10.1038/s41598-019-51645-4

    Article  CAS  Google Scholar 

  19. Relyea RA, Mills N (2001) Predator-induced stress makes the pesticide carbaryl more deadly to gray treefrog tadpoles (Hyla versicolor). Proc Natl Acad Sci USA 98:2491–2496. https://doi.org/10.1073/Pnas.031076198

    Article  CAS  Google Scholar 

  20. Jackson MC, Loewen CJG, Vinebrooke RD, Chimimba CT (2016) Net effects of multiple stressors in freshwater ecosystems: a meta-analysis. Glob Chang Biol 22:180–189. https://doi.org/10.1111/gcb.13028

    Article  Google Scholar 

  21. Birk S, Chapman D, Carvalho L et al (2020) Impacts of multiple stressors on freshwater biota across spatial scales and ecosystems. Nat Ecol Evol. https://doi.org/10.1038/s41559-020-1216-4

    Article  Google Scholar 

  22. Liess M, Foit K, Knillmann S et al (2016) Predicting the synergy of multiple stress effects. Sci Rep 6:32965. https://doi.org/10.1038/srep32965

    Article  CAS  Google Scholar 

  23. Silver KS, Du Y, Nomura Y, et al (2014) Voltage-gated sodium channels as insecticide targets. In: Advances in Insect Physiology

  24. Copping LG, Hewitt HG (1998) Chemistry and mode of action of crop protection agents. R Soc Chem. https://doi.org/10.1039/9781847550422

    Article  Google Scholar 

  25. Gottardi M, Kretschmann A, Cedergreen N (2016) Measuring cytochrome P450 activity in aquatic invertebrates: a critical evaluation of in vitro and in vivo methods. Ecotoxicology. https://doi.org/10.1007/s10646-015-1600-z

    Article  Google Scholar 

  26. Bach J, Snegaroff J (1989) Effects of the fungicide prochloraz on xenobiotic metabolism in rainbow trout: In vivo induction. Xenobiotica. https://doi.org/10.3109/00498258909034671

    Article  Google Scholar 

  27. Pilling ED, Bromleychallenor KAC, Walker CH, Jepson PC (1995) Mechanism of synergism between the pyrethroid insecticide λ-cyhalothrin and the imidazole fungicide prochloraz, in the honeybee (Apis mellifera L.). Pestic Biochem Physiol. https://doi.org/10.1006/pest.1995.1001

    Article  Google Scholar 

  28. Tessier AJ (1986) Comparative population regulation of two planktonic Cladocera (Holopedium gibberum and Daphnia catawba). Ecology. https://doi.org/10.2307/1938573

    Article  Google Scholar 

  29. Müller-Navarra D, Lampert W (1996) Seasonal patterns of food limitation in Daphnia galeata: separating food quantity and food quality effects. J Plankton Res 18:1137–1157. https://doi.org/10.1093/plankt/18.7.1137

    Article  Google Scholar 

  30. Liess M (2002) Population response to toxicants is altered by intraspecific interaction. Environ Toxicol Chem 21:138–142. https://doi.org/10.1002/etc.5620210120

    Article  CAS  Google Scholar 

  31. Kretschmann A, Gottardi M, Dalhoff K, Cedergreen N (2015) The synergistic potential of the azole fungicides prochloraz and propiconazole toward a short alpha-cypermethrin pulse increases over time in Daphnia magna. Aquat Toxicol 162:94–101. https://doi.org/10.1016/j.aquatox.2015.02.011

    Article  CAS  Google Scholar 

  32. Münze R, Hannemann C, Orlinskiy P et al (2017) Pesticides from wastewater treatment plant effluents affect invertebrate communities. Sci Total Environ 599–600:387–399

    Article  Google Scholar 

  33. Kreuger J (1998) Pesticides in stream water within an agricultural catchment in southern Sweden, 1990–1996. Sci Total Environ 216:227–251

    Article  CAS  Google Scholar 

  34. Bowman MC, Oiler WL, Cairns T et al (1981) Stressed bioassay systems for rapid screening of pesticide residues. Part I: evaluation of bioassay systems. Arch Environ Contam Toxicol. https://doi.org/10.1007/BF01057571

    Article  Google Scholar 

  35. OECD (2002) Guidance document on aquatic toxicity testing of difficult substances and mixtures. OECD Publishing, Paris

    Book  Google Scholar 

  36. Aptula AO, Jeliazkova NG, Schultz TW, Cronin MTD (2005) The better predictive model: High q2 for the training set or low root mean square error of prediction for the test set? QSAR Comb Sci. https://doi.org/10.1002/qsar.200430909

    Article  Google Scholar 

  37. Pörtner HO (2012) Integrating climate-related stressor effects on marine organisms: Unifying principles linking molecule to ecosystem-level changes. Mar Ecol Prog Ser. https://doi.org/10.3354/meps10123

    Article  Google Scholar 

  38. Sokolova IM (2013) Energy-limited tolerance to stress as a conceptual framework to integrate the effects of multiple stressors. Integr Comp Biol. https://doi.org/10.1093/icb/ict028

    Article  Google Scholar 

  39. Kooijman SALM (2000) Dynamic Energy and Mass Budgets in Biological Systems

  40. Verheyen J, Stoks R (2020) Negative bioenergetic responses to pesticides in damselfly larvae are more likely when it is hotter and when temperatures fluctuate. Chemosphere. https://doi.org/10.1016/j.chemosphere.2019.125369

    Article  Google Scholar 

  41. Bjergager MBA, Dalhoff K, Kretschmann A et al (2017) Determining lower threshold concentrations for synergistic effects. Aquat Toxicol 182:79–90. https://doi.org/10.1016/j.aquatox.2016.10.020

    Article  CAS  Google Scholar 

  42. Syberg K, Elleby A, Pedersen H et al (2008) Mixture toxicity of three toxicants with similar and dissimilar modes of action to Daphnia magna. Ecotoxicol Environ Saf. https://doi.org/10.1016/j.ecoenv.2007.05.010

    Article  Google Scholar 

  43. Liess M, Ratte T, Ebke P, Hollert H (2019) 20 years SETAC GLB: increasing realism of pesticide risk assessment. Environ Sci Eur 31:13. https://doi.org/10.1186/s12302-019-0197-x

    Article  Google Scholar 

  44. Kath J, Thomson JR, Thompson RM et al (2018) Interactions among stressors may be weak: Implications for management of freshwater macroinvertebrate communities. Divers Distrib 24:939–950. https://doi.org/10.1111/ddi.12737

    Article  Google Scholar 

  45. Russo R, Becker JM, Liess M (2018) Sequential exposure to low levels of pesticides and temperature stress increase toxicological sensitivity of crustaceans. Sci Total Environ 610:563–569. https://doi.org/10.1016/j.scitotenv.2017.08.073

    Article  CAS  Google Scholar 

  46. Knillmann S, Orlinskiy P, Kaske O et al (2018) Indication of pesticide effects and recolonization in streams. Sci Total Environ 630:1619–1627. https://doi.org/10.1016/j.scitotenv.2018.02.056

    Article  CAS  Google Scholar 


Page 2

Time point Food level Prochloraz RMSE Observedb Predictedc MDRd
(μg/L) SAa CA EA LC50 LC50 SAa CA EA
Day 21 Low food 0 0.098
1 6.0 8.3 5.6 0.048 0.079 1.7 3.2 0.93
32 4.2 17 10 0.0066 0.0023 0.34 25 6.8
100 5.8 25 18 0.0003 0.0008 2.8 660 150
High food 0 0.49
1 6.8 3.1 3.1 0.55 0.59 0.77 0.94 0.94
32 8.4 17 16 0.19 0.21 1.4 2.8 2.6
100 4.9 14 13 0.20 0.22 1.0 2.7 2.6
Day 7 Low food 0 0.13
1 5.9 9.7 6.8 0.053 0.11 2.1 2.8 1.4
32 4.1 15 9.8 0.012 0.017 1.4 14 6.2
100 7.7 25 19 0.001 0.0032 3.2 240 75
High food 0 0.53
1 5.6 4.4 4.4 0.65 0.49 0.80 0.82 0.82
32 8.0 14 14 0.26 0.33 1.2 2.1 2.0
100 7.4 13 13 0.25 0.19 0.71 2.2 2.1

  1. Predictions with different approaches for combining stressors: Stress-Addition according to the Multi-TOX approach (SA), effect-addition (EA) and concentration-addition (CA). Whole curve estimates of combined toxicant effect: root mean square error (RMSE). Point estimate (LC50) of combined toxicant effect: model deviation ratio (MDR)
  2. aSA (stress addition) calculated according to the Multi-TOX approach. For low food 81% SA, for high food 38% SA
  3. bObserved LC50 calculated with the mean survival of all experimental repetitions, fitted with ECx-SyS
  4. cPredicted LC50 based on the concentration–response relationships of single toxicants modeled with stress addition according to the Multi-TOX approach
  5. dMDR values are calculated by dividing the predicted LC50 of SA, CA, EA by the observed LC50. For values of CA > 2, interactions between stressors are interpreted as synergistic related to CA