Como escrever o volume delimitado por x2 + y2 + z2 = 4 e x2 + y2 3z em coordenadas cartesianas

Selecione os exercícios por

Exercício Contextualizado

Os botões acima permitem selecionar que tipos de exercício você deseja ver na lista.
Para retirar alguma categoria da lista, clique sobre o botão para toná-lo inativo. Para adicioná-la, clique novamente no botão.

2950   

Calcule utilizando coordenadas esféricas. $\displaystyle\iiint\limits_{E}xyz\,dV$, onde $E$ é o sólido limitado pelos paraboloides $z=x^{2}+y^{2}$ e $z=8-x^{2}-y^{2}.$

3117   

Seja \(G\) a região sólida dentro da esfera de raio \(2\) centrada na origem e acima do plano \(z=1\). Mostre (ou verifique) os seguintes resultados:

  1.  O volume de \(G\) é dado por \[\iiint\limits_G\,dV = \int_0^{2\pi}\int_0^{\dfrac{\pi}{3}}\int_{\sec\phi}^{2}\rho^2\sin\phi\,d\rho d\phi d\theta \]

  2.  \[\iiint\limits_G\dfrac{z}{x^2+y^2+z^2}\,dV = \int_0^{2\pi}\int_0^{\pi/3}\int_{\sec\phi}^{2}\rho\cos\phi\sin\phi\,d\rho d\phi d\theta \]

3120   

Usando coordenadas esféricas, calcule a massa da esfera sólida de raio \(a\) com densidade proporcional à distância ao centro (tomando \(k\) como a constante de proporcionalidade).

2593   

Marque o ponto cujas coordenadas cilíndricas são $(2, \pi/4,1)$ e $(4, -\pi/3,5)$. Em seguida, encontre as coordenadas retangulares do ponto.

Para $(2, \pi/4,1):$ $(\sqrt{2},\sqrt{2},1)$ e para $(4, -\pi/3,5):$ $(2, -2\sqrt{3},5)$.

2497   

Esboce o sólido cujo volume é dado pela integral iterada.

  1.  $\displaystyle\int_{0}^{1}\int_{0}^{1-x}\int_{0}^{2-2z}\;dy dz dx$

  2.  $\displaystyle\int_{0}^{2}\int_{0}^{2-y}\int_{0}^{4-y^{2}}\;dx dz dy$

  3.  $\displaystyle\int_{0}^{1}\int_{\sqrt{1-z}}^{\sqrt{4-z}}\int_{2}^{3}\;dx dy dz$

  4.  $\displaystyle\int_{0}^{2}\int_{x^{2}}^{2x}\int_{0}^{x+y}\;dz dy dx$

  1. (... fig)

  2. (... fig.)

  3.  $\displaystyle \left\lbrace (x,y,z); 2 \leq x \leq 3,  \sqrt{1 - z} \leq y \leq \sqrt{4 - z} , 0 \leq z \leq 1\right\rbrace.$

  4.  $\displaystyle \left\lbrace (x,y,z); 0 \leq x \leq 2,  x^{2} \leq y \leq 2x , 0 \leq z \leq x + y\right\rbrace.$

2969   

Calcule a integral, transformando para coordenadas esféricas. $\displaystyle\int_{0}^{2}\int_{0}^{\sqrt{4-y^{2}}}\int_{0}^{\sqrt{4-x^{2}-y^{2}}}\dfrac{1}{x^{2}+y^{2}+z^{2}}\,dzdxdy$.

2594   

Mude as coordenadas de $(1,-1,4)$ de retangulares para cilíndricas.

 $\displaystyle (\sqrt{2}, \dfrac{7\pi}{4}, 4).$

2947   

Calcule utilizando coordenadas esféricas. $\displaystyle\iiint\limits_{B}\sqrt{x+y}\sqrt[3]{x+2y-z}\,dxdydz$, onde $B$ é a região $1\leq x+y\leq 2$, $0\leq x+2y-z\leq 1$ e $0\leq z\leq 1.$

$\sqrt{2} - \dfrac{1}{2}.$

2926   

Identifique a superfície cuja equação é $\rho=\sin{\theta}\sin{\phi}.$

Esfera de raio $\dfrac{1}{2}$ centrada no ponto $\left(0,\dfrac{1}{2},0\right).$

2941   

Calcule utilizando coordenadas esféricas. $\displaystyle\iiint\limits_{B}(x^{2}+y^{2}+z^{2})^{2}\,dV$, onde $B$ é a bola com centro na origem e raio $5.$

2954   

Usando coordenadas esféricas, determine o volume do elipsoide $\dfrac{x^{2}}{a^{2}}+\dfrac{y^{2}}{b^{2}}+\dfrac{z^{2}}{c^{2}}\leq 1.$

3050   

A figura mostra a região de integração da integral

$$\int_{0}^{1}\int_{\sqrt{x}}^{1}\int_{0}^{1-y}f(x,y,z)\;dz dy dx.$$

Reescreva essa integral como uma integral iterada equivalente nas cinco outras ordens.

Como escrever o volume delimitado por x2 + y2 + z2 = 4 e x2 + y2 3z em coordenadas cartesianas

$\int_{0}^{1}\int_{\sqrt{x}}^{1}\int_{0}^{1-y}f(x,y,z)\;dz dy dx = \int_{0}^{1}\int_{0}^{y^2}\int_{0}^{1-y}f(x,y,z)\;dz dx dy $$= \int_{0}^{1}\int_{0}^{1 - z}\int_{0}^{y^2}f(x,y,z)\;dx dy dz = \int_{0}^{1}\int_{0}^{1 - y}\int_{0}^{y^2}f(x,y,z)\;dx dz dy $

$= \int_{0}^{1}\int_{0}^{1 - \sqrt{x}}\int_{\sqrt{x}}^{1-z}f(x,y,z)\;dy dz dx = \int_{0}^{1}\int_{0}^{(1 - z)^2}\int_{\sqrt{x}}^{1-z}f(x,y,z)\;dy dx dz.$

2498   

Esboce a região limitada pelos gráficos das equações e use uma integral tripla para calcular seu volume.

  1.  $z+x^{2}=4$, $y+z=4$, $y=0$ e $z=0.$

  2.  $y=2-z^{2}$, $y=z^{2}$, $x+z=4$ e $x=0.$

  3.  $y^{2}+z^{2}=1$, $x+y+z=2$ e $x=0.$

  1.  $\dfrac{128}{5}.$

  2.  $\dfrac{32}{3}.$

  3.  $2\pi.$

3056   

 Faça o esboço do sólido cujo volume é dado pela integral e calcule essa integral.

$\displaystyle \int_0^{\pi/2}\int_0^2\!\!\int_0^{9 - r^2} r dz dr d\theta$

Como escrever o volume delimitado por x2 + y2 + z2 = 4 e x2 + y2 3z em coordenadas cartesianas

2945   

Calcule utilizando coordenadas esféricas. $\displaystyle\iiint\limits_{B}x\,dxdydz$, onde $B$ é o conjunto $x\geq 0$ e $x^{2}+y^{2}+z^{2}\leq 4.$

2602   

Calcule, usando integração, o volume do sólido limitados pelas superfícies $z = 1$, $z = 2$ e $z = \sqrt{x^2 + y^2}.$

2540   

Um cubo sólido de $2$ unidades de lado é limitado pelos planos $x=\pm 1$, $z=\pm 1$, $y=3$ e $y=5.$ Encontre o centro de massa e os momentos de inércia desse cubo.

Centro de massa: $\displaystyle \left(0,4,0 \right),$ $I_{x} = \dfrac{400}{3},$ $I_{y} = \dfrac{16}{3},$ $I_{z} = \dfrac{400}{3}.$

2435   

Calcule a integral tripla.

  1. $\displaystyle\iiint\limits_{  E}2z\;dx dy dz$, onde $E$ é o conjunto $x^{2}+y^{2}+z^{2}\leq 4$ e $z\geq 0.$

  2. $\displaystyle\iiint\limits_{  E}2z\;dx dy dz$, onde $E$ é o conjunto $4x^{2}+9y^{2}+z^{2}\leq 4$ e $z\geq 0.$

2957   

Usando coordenadas esféricas, determine o volume da região cortada do cilindro sólido $x^{2}+y^{2}\leq 1$ pela esfera $x^{2}+y^{2}+z^{2}=4.$

$\dfrac{4\pi(8 - 3\sqrt{3})}{3}.$

3053   

Esboce o sólido cujo volume é dado pela integral iterada.

$\displaystyle\int_{0}^{1}\int_{0}^{1-x}\int_{0}^{2-2z}\;dy dz dx$

Como escrever o volume delimitado por x2 + y2 + z2 = 4 e x2 + y2 3z em coordenadas cartesianas

3118   

Use coordenadas esféricas para encontrar o volume do sólido: limitado acima pela esfera \(\rho=4\) e abaixo pelo cone \(\phi=\pi/3\).

2421   

Calcule a integral tripla $\displaystyle\iiint\limits_{B}xyz^{2}\,dV$, onde $B$ é a caixa retangular dada por $B=\{(x,y,z) \in \mathbb{R}^3|\;0\leq x\leq 1,\;-1\leq y\leq 2,\;0\leq z\leq 3\}$, integrando primeiro em relação a $y$, depois a $z$ e então a $x$.

2960   

Usando coordenadas esféricas, determine o volume e o centroide do sólido que está acima do cone $\phi=\pi/3$ e abaixo da esfera $\rho=4\cos{\phi}.$

Volume: $10\pi;$ centróide: $(0,0,2,1).$

2931   

Calcule a integral em coordenadas esféricas. $\displaystyle\int_{0}^{2\pi}\int_{0}^{\pi/4}\int_{0}^{2}(\rho\cos{\phi})\rho^{2}\sin{\phi}\,d\rho d\phi d\theta$.

2943   

Calcule utilizando coordenadas esféricas. $\displaystyle\iiint\limits_{E}z\,dV$, onde $E$ está entre as esferas $x^{2}+y^{2}+z^{2}=1$ e $x^{2}+y^{2}+z^{2}=4$, no primeiro octante.

2949   

Calcule utilizando coordenadas esféricas. $\displaystyle\iiint\limits_{B}\sqrt{x^{2}+y^{2}+z^{2}}\,dxdydz$, onde $B$ é a interseção da semi-esfera  $x^{2}+y^{2}+z^{2}\leq 4$, $z\geq 0$, com o cilindro $x^{2}+y^{2}\leq 1.$

$\displaystyle \dfrac{\pi}{4}\left( 32- 14\sqrt{3} + \ln(2 + \sqrt{3})\right).$

2595   

Identifique a superfície cuja equação é dada por $z = 4 - r^2$.

$z = 4 - x^2 - y^2,$ o parabolóide circular com vértice $(0,0,4)$.

2538   

Determine o sólido $E$ para o qual a integral $$ \iiint\limits_{  E}(1-x^{2}-2y^{2}-3z^{2})\,dV$$ é máxima.

$E = \left\{ (x,y,z);  x^2 + 2y^2 + 3z^2 \leq 1 \right\}.$

2430   

Calcule a integral tripla.

  1.  $\displaystyle\iiint\limits_{  E}\sqrt{1-z^{2}}\;dx dy dz$, onde $E$ é o cubo $0\leq x\leq 1$, $0\leq y\leq 1$ e $0\leq z\leq 1.$

  2.  $\displaystyle\iiint\limits_{  E}\;dx dy dz$, onde $E$ é o conjunto $x^{2}+y^{2}\leq z \leq 2x.$

  1.  $\dfrac{\pi}{4}.$

  2.  $\dfrac{\pi}{2}.$

2432   

Calcule a integral tripla.

  1.  $\displaystyle\iiint\limits_{  E}y\;dx dy dz$, onde $E$ é o conjunto $x^{2}+4y^{2}\leq 1$ e $0\leq z \leq 1.$

  2.  $\displaystyle\iiint\limits_{  E}x\;dx dy dz$, onde $E$ é o conjunto $x^{2}+y^{2}\leq 4$, $x\geq 0$ e \\ $x+y\leq z \leq x+y+1.$

2604   

Vamos demonstrar a expressão geral para o volume de um cone circular de altura $h$ e raio da base $R$.

  1.  Representando o cone com vértice na origem e base no plano $z = h$, expresse $V$ por meio de uma integral dupla.

  2.  Calculando a integral, verifique que $V = \dfrac{\pi R^2 h}{3}$.

  1.  $V = 2 \displaystyle \int_{0}^{h} \int_{-\frac{R}{h}z}^{\frac{R}{h}z} \sqrt{\dfrac{R^{2}}{h^{2}} z^{2} - x^{2}} dx dz.$

  2.  Note que $\displaystyle \int_{0}^{h} \int_{-\frac{R}{h}z}^{\frac{R}{h}z} \sqrt{\dfrac{R^{2}}{h^{2}} z^{2} - x^{2}} dx dz = \dfrac{\pi R^{2}h}{6}$ é o volume da parte superior (ou inferior) do cone.

2965   

Dentre as coordenadas cilíndricas ou esféricas, utilize a que lhe parecer mais apropriada para determinaretermine o volume da menor cunha esférica cortada de uma esfera de raio $a$ por dois planos que se interceptam ao longo de um diâmetro com um ângulo de $\pi/6.$

3116   

Seja \(G\) a região sólida dentro da esfera de raio \(2\) centrada na origem e acima do plano \(z=1\). Mostre (ou verifique) os seguintes resultados:

  1.  O volume de \(G\) é dado por \[\iiint\limits_G\,dV = \int_0^{2\pi}\int_0^{\sqrt{3}}\int_1^{\sqrt{4-r^2}}r\,dzdrd\theta \]

  2.  \[\iiint\limits_G\dfrac{z}{x^2+y^2+z^2}\,dV = \int_0^{2\pi}\int_0^{\sqrt{3}}\int_1^{\sqrt{4-r^2}}\dfrac{rz}{r^2+z^2}\,dzdrd\theta \]

2929   

Esboce o sólido cujo volume é dado pela integral abaixo e calcule-a.

$$\int_{0}^{\pi/6}\!\!\int_{0}^{\pi/2}\!\!\int_{0}^{3}\rho^{2}\sin{\phi}\;d\rho d\theta d\phi$$

Como escrever o volume delimitado por x2 + y2 + z2 = 4 e x2 + y2 3z em coordenadas cartesianas

2599   

Calcule as seguintes integrais triplas.

  1.  $\displaystyle\iiint\limits_{  E}  \sqrt{x^2 + y^2} \, dV$, em que $E$ é a região que está dentro do cilindro   $x^2 + y^2 = 16$ e entre os planos $z = -5$ e $z = 4$.

  2.  $\displaystyle\iiint\limits_{  E}  y \, dV$, em que $E$ é o sólido que está entre os cilindros $x^2 + y^2 = 1$ e $x^2 + y^2 = 4$, acima do plano $xy$ e abaixo do plano $z = x + 2$.

  3.  $\displaystyle\iiint\limits_{  E}  x \, dV$, em que $E$ está delimitidado pelos planos $z = 0$ e $z = x + y + 5$ e pelos cilindros $x^2 + y^2 = 4$ e $x^2 + y^2 = 9$.

  1.  $384\pi$.

  2. $0$.

  3. $\dfrac{65\pi}{4}$.

2603   

Determine o volume do sólido limitado pelo cilindro $x^2 + y^2 = 4$ e pelos planos $z = 0$ e $y + z = 3$.

3121   

Usando coordenadas esféricas, calcule a massa do sólido compreendido entre as esferas \(x^2+y^2+z^2=1\) e \(x^2+y^2+z^2=4\), com densidade \(\delta(x,y,z)=(x^2+y^2+z^2)^{-1/2}.\)

2924   

Marque o ponto cujas coordenadas esféricas é $(1,0,0)$ e encontre as coordenadas retangulares do ponto.

$(0,0,1).$

Como escrever o volume delimitado por x2 + y2 + z2 = 4 e x2 + y2 3z em coordenadas cartesianas

2420   

Use a integral tripla para determinar o volume do sólido dado por $x^{2}+y^{2}\leq z\leq \sqrt{4-3x^{2}-3y^{2}}.$


Primeiramente, vamos determinar a projeção no plano $xy$ da interseção de \begin{eqnarray*} z&=&\sqrt{4-3x^{2}-3y^{2}}\\ z&=&x^{2}+y^{2}. \end{eqnarray*} Da primeira equação temos que \begin{eqnarray*} \label{1}z=\sqrt{4-3x^{2}-3y^{2}}\Leftrightarrow z^{2}=4-3x^{2}-3y^{2}\Leftrightarrow z^{2}=4-3(x^{2}+y^{2}). \end{eqnarray*} Substituindo a segunda equação  na primeira, obtemos que $$z^{2}=4-z\Leftrightarrow z^{2}+3z-4=0\Leftrightarrow (z-1)(z-4)=0.$$ Logo, $z=-4$ e $z=1.$ Notemos que $z=-4$ não satisfaz as duas primeiras equações acima, então a projeção $D$ no plano $xy$ é o círculo de raio 1, isto é, $D=\{(x,y)\in \mathbb{R};\;\, x^{2}+y^{2}\leq 1\}.$ Assim, o volume, $V$, do sólido é: $$V=\iint\limits_{D}\bigg[\int_{x^{2}+y^{2}}^{\sqrt{4-3x^{2}-3y^{2}}}1\, dz\bigg]\,dA = \iint\limits_{ D}\sqrt{4-3x^{2}-3y^{2}}-(x^{2}+y^{2})\,dA.$$ Passando para coordenadas polares temos que \begin{eqnarray*}  x=r\cos \theta\\ y=r\sin \theta\\ dA=r\,dr\,d\theta\\ 0\leq r\leq 1\\ 0\leq \theta \leq 2\pi.\\ \end{eqnarray*} Então, $$V=\int_{0}^{2\pi}\int_{0}^{1}(\sqrt{4-3r^{2}}-r^{2})r\,dr\,d \theta=\int_{0}^{2\pi}\int_{0}^{1}(r\sqrt{4-3r^{2}}-r^{3})\,dr\,d\theta$$ $$=\int_{0}^{2\pi}\,d\theta\cdot \bigg[\bigg(\underbrace{\int_{0}^{1}r\sqrt{4-3r^{2}}\,dr}_{\substack{ u=4-3r^{2}\\ du=-6r\,dr}}\bigg)-\bigg(\int_{0}^{1}r^{3}\,dr\bigg)\bigg]$$ $$=\theta\bigg|_{0}^{2\pi}\cdot \bigg[\bigg(\int_{4}^{1}r\cdot u^{1/2}\frac{du}{-6r}\bigg)-\bigg(\frac{r^{4}}{4}\bigg|_{0}^{1}\bigg)\bigg]$$ $$=2\pi\cdot \bigg[\bigg(-\frac{1}{6}\int_{4}^{1}u^{1/2}\,du\bigg)-\frac{1}{4}\bigg]=2\pi \cdot \bigg[\bigg(-\frac{1}{6}\cdot \frac{2}{3}u^{3/2}\bigg|_{4}^{1}\bigg)-\frac{1}{4}\bigg]$$ $$=2\pi \cdot \bigg[-\frac{1}{9}+\frac{1}{9}\cdot 8-\frac{1}{4}\bigg]=2\pi \cdot \frac{19}{36}=\frac{19\pi}{18}.$$

2970   

Calcule a integral, transformando para coordenadas esféricas. $\displaystyle\int_{-a}^{a}\int_{-\sqrt{a^{2}-y^{2}}}^{\sqrt{a^{2}-y^{2}}}\int_{-\sqrt{a^{2}-x^{2}-y^{2}}}^{\sqrt{a-x^{2}-y^{2}}}(x^{2}z+y^{2}z+z^{3})\,dzdxdy$.

2539   

Encontre o centróide e os momentos de inércia $I_{x}$, $I_{y}$ e $I_{z}$ do tetraedro cujos vértices são os pontos $(0,0,0)$, $(1,0,0)$, $(0,1,0)$ e $(0,0,1).$

Centróide: $\displaystyle \left(\frac{1}{4},\frac{1}{4},\frac{1}{4} \right),$ $I_{x} = I_{y} = I_{z} = \dfrac{1}{30}.$

2585   

Encontre o volume da região sólida limitada abaixo pelo plano $z = 0$, lateralmente pelo cilindro $x^2 + y^2 = 1$ e acima pelo paraboloide $z = x^2 + y^2$.


Temos que a região sólida $E$ está acima do plano $z=0$, abaixo do paraboloide $z=x^{2}+y^{2}$ e limitado lateralmente pelo cilindro $x^{2}+y^{2}=1$. Notemos que podemos dividir a região sólida em quatro porções simétricas. Assim, levando em consideração a porção da região sólida $E$ que está no primeiro octante, temos em coordenadas cilíndricas $$0\leq \theta \leq \frac{\pi}{2},\, 0\leq r \leq 1\,\, \mbox{e}\,\, 0\leq z\leq x^{2}+y^{2}=r^{2}.$$ Assim, o volume da região sólida $E$ é: $$V=\iiint\limits_{  E}1\,dV=4\int_{0}^{\frac{\pi}{2}}\int_{0}^{1}\int_{0}^{r^{2}}1\,r\,dz\,dr\,d\theta$$ $$=4\int_{0}^{\frac{\pi}{2}}\int_{0}^{1}zr\,\bigg|_{0}^{r^{2}}\,dr\,d\theta=4\int_{0}^{\frac{\pi}{2}}\int_{0}^{1}r^{3}\,dr\,d\theta$$ $$=4\int_{0}^{\frac{\pi}{2}}\,d\theta\cdot \int_{0}^{1}r^{3}\,dr=4\cdot \theta\bigg|_{0}^{\frac{\pi}{2}}\cdot \frac{r^{4}}{4}\bigg|_{0}^{1}$$ $$=4\cdot \frac{\pi}{2}\cdot \frac{1}{4}=\frac{\pi}{2}.$$

2496   

Para qual valor de $c$ o volume do elipsóide $x^{2}+(y/2)^{2}+(z/c)^{2}=1$ é igual a $8\pi$?

2588   

Seja $C$ o cilindro de base circular e eixo $(Oz)$, com raio $2$ e altura $3$, com base na origem e densidade inversamente proporcional $\grave{a}$ distância ao eixo.

  1. Determine o momento de inércia de $C$ com relação ao eixo $(Oz)$.

  2. Se $C$ gira em torno do eixo $(Oz)$ com energia cinética $K$, qual a velocidade instantânea nos pontos de sua superfície lateral? (Fórmulas: $\bullet$ Momento de inércia: $I=\iiint\limits_{C}\rho\cdot l^{2}\,dV$, onde $\rho$ é a densidade e $l$  é a distância ao eixo; $\bullet$ Energia cinética de rotação: $K=\dfrac{1}{2}I\omega^{2}.$)

  1.  $6\pi.$

  2.  $\displaystyle \sqrt{\frac{K}{3\pi}}.$

2915   

Um sólido está acima do cone $z=\sqrt{x^{2}+y^{2}}$ e abaixo da esfera $x^{2}+y^{2}+z^{2}=z.$ Escreva uma descrição do sólido em termos de desigualdades envolvendo coordenadas esféricas.


A mudança de coordenadas retangulares para coordenadas cartesianas é dada por

$$\begin{cases}x = \rho \cos{\theta} \sin{\phi} \\y = \rho \sin{\theta} \sin{\phi}\\z = \rho \cos{\phi},\end{cases}$$

em que $\rho \geq 0$, $\theta \in [0,2\pi]$ e $\phi \in [0,\pi]$. Observe que $\sin{\phi} \geq 0$ quando $\phi \in [0,\pi]$. Logo, a equação do cone em coordenadas esféricas pode ser escrita como $\rho \cos{\phi} = \sqrt{\rho^2 \sin^2{\phi}} = \rho\sin{\phi}$. A origem $(0,0,0)$ pertence ao cone e é dada por $\rho = 0$. Nos demais pontos, $\rho \neq 0$, donde $\phi = \pi/4$.

A equação da esfera em coordenadas esféricas pode ser escrita como $\rho^2=\rho\cos{\phi}$. A origem $(0,0,0)$ pertence à esfera e é dada por $\rho=0$. Nos demais pontos, $\rho \neq 0$, donde $\rho = \cos{\phi}$.

Portanto, o sólido pode ser descrito em coordenadas esféricas por

$$E = \left\{(\rho, \theta, \phi): 0 \leq \rho \leq \cos{\phi}, 0 \leq \theta \leq 2\pi \mbox{ e } 0 \leq \phi \leq \frac{\pi}{4}\right\}.$$

Como escrever o volume delimitado por x2 + y2 + z2 = 4 e x2 + y2 3z em coordenadas cartesianas

2951   

Seja $D$ a região limitada abaixo pelo plano $z=0$, acima pela esfera  $x^{2}+y^{2}+z^{2}=4$ e dos lados pelo cilindro $x^{2}+y^{2}=1$. Monte as integrais triplas em coordenadas esféricas que dão o volume de $D$ usando as ordens de integração a seguir.

  1. $d\rho\,d\phi\,d\theta$;

  2. $d\phi\,d\rho\,d\theta$.

  1. $\displaystyle \int_{0}^{2\pi}\int_{0}^{\pi/6}\int_{0}^{2} \rho^{2}\sin(\phi)\; d\rho d\phi d\theta + \int_{0}^{2\pi}\int_{\pi/6}^{\pi/2}\int_{0}^{\csc(\phi)} \rho^{2}\sin(\phi)\; d\rho d\phi d\theta.$

  2. $\displaystyle \int_{0}^{2\pi}\int_{1}^{2}\int_{\pi/6}^{\arcsin(1/\rho)} \rho^{2}\sin(\phi)\; d\phi d\rho d\theta + \int_{0}^{2\pi}\int_{0}^{2}\int_{0}^{\pi/6} \rho^{2}\sin(\phi)\; d\phi d\rho d\theta.$

3051   

A figura mostra a região da integral

$$\int_{0}^{1}\int_{0}^{1-x^{2}}\int_{0}^{1-x}f(x,y,z)\;dy dz dx.$$

Reescreva essa integral como uma integral iterada equivalente nas cinco outras ordens.

Como escrever o volume delimitado por x2 + y2 + z2 = 4 e x2 + y2 3z em coordenadas cartesianas

$\int_{0}^{1}\int_{\sqrt{x}}^{1}\int_{0}^{1-y}f(x,y,z)\;dz dy dx = \int_{0}^{1}\int_{0}^{y^2}\int_{0}^{1-y}f(x,y,z)\;dz dx dy $$= \int_{0}^{1}\int_{0}^{1 - z}\int_{0}^{y^2}f(x,y,z)\;dx dy dz = \int_{0}^{1}\int_{0}^{1 - y}\int_{0}^{y^2}f(x,y,z)\;dx dz dy $

$= \int_{0}^{1}\int_{0}^{1 - \sqrt{x}}\int_{\sqrt{x}}^{1-z}f(x,y,z)\;dy dz dx = \int_{0}^{1}\int_{0}^{(1 - z)^2}\int_{\sqrt{x}}^{1-z}f(x,y,z)\;dy dx dz.$

2533   

Escreva seis integrais triplas iteradas diferentes para o volume do sólido retangular no  primeiro octante limitado pelos planos coordenados e pelos planos $x=1$, $y=2$ e $z=3$. Calcule uma das integrais.

$$\begin{split} 6 &= \int_{0}^{1}\int_{0}^{2}\int_{0}^{3} dz dy dx = \int_{0}^{2}\int_{0}^{1}\int_{0}^{3} dz dx dy = \int_{0}^{3}\int_{0}^{2}\int_{0}^{1} dx dy dz\\ &= \int_{0}^{2}\int_{0}^{3}\int_{0}^{1} dx dz dy = \int_{0}^{3}\int_{0}^{1}\int_{0}^{2} dy dx dz = \int_{0}^{1}\int_{0}^{3}\int_{0}^{2} dy dx dx. \end{split} $$

2483   

Use a integral tripla para determinar o volume do sólido dado.

  1.  $x^{2}+y^{2}\leq 1$ e $x^{2}+z^{2}\leq 1.$

  2.  $(x-a)^{2}+y^{2}\leq a^{2}$, $x^{2}+y^{2}+z^{2}\leq 4a^{2}$, $z\geq 0$ $(a>0).$

  3.  $x^{2}+y^{2}\leq a^{2}$ e $x^{2}+z^{2}\leq a^{2}$ $(a>0).$

  4.  $x^{2}+y^{2}+z^{2}\leq a^{2}$ e $z\geq \dfrac{a}{2}$ $(a>0).$

  1.  $\dfrac{16}{3}.$

  2.  $\dfrac{16a^3}{3} \left(\dfrac{\pi}{2} - \dfrac{2}{3}\right).$

  3.  $\dfrac{16a^3}{3}.$

  4.  $\dfrac{5\pi a^3}{24}.$

2484   

Use a integral tripla para determinar o volume do sólido dado.

  1.  $x^{2}\leq z \leq 1-y$ e $y\geq 0.$

  2.  $x^{2}+2y^{2}\leq z\leq 2a^{2}-x^{2}$ $(a>0).$

  3.  $x^{2}+y^{2}+(z-1)^{2}\leq 1$ e $z\geq x^{2}+y^{2}.$

  4.  $4x^{2}+9y^{2}+z^{2}\leq 4$ e $4x^{2}+9y^{2}\leq 1.$

  1.  $\dfrac{4}{15}.$

  2.  $\pi a^4.$

  3.  $\dfrac{71\pi}{54}.$

  4.  $\dfrac{7\pi}{12}.$

2958   

Usando coordenadas esféricas, determine o volume do sólido que está acima do plano $z=2\sqrt{3}$ e abaixo da esfera $x^{2}+y^{2}+z^{2}=16.$

2964   

Dentre as coordenadas cilíndricas ou esféricas, utilize a que lhe parecer mais apropriada para determinar o volume e o centroide do sólido $E$ que está acima do cone $z=\sqrt{x^{2}+y^{2}}$ e abaixo da esfera $x^{2}+y^{2}+z^{2}=1.$

Volume: $\dfrac{\pi(2 - \sqrt{2})}{3};$ centróide: $\left(0,0, \dfrac{3}{8(2 - \sqrt{2})} \right).$

2956   

Usando coordenadas esféricas, determine o volume da menor região cortada da esfera sólida $\rho \leq 2$ pelo plano $z=1.$

2433   

Calcule a integral tripla.

  1.  $\displaystyle\iiint\limits_{  E}2z\;dx dy dz$, onde $E$ é o conjunto $x^{2}+y^{2}\leq 1$, $x^{2}+y^{2}+z^{2}\leq 4$ e $z\geq 0.$

  2.  $\displaystyle\iiint\limits_{  E}x\;dx dy dz$, onde $E$ é o conjunto $x^{2}-y^{2}\leq z \leq 1-2y^{2}.$

2932   

Calcule a integral em coordenadas esféricas. $\displaystyle\int_{0}^{2\pi}\int_{0}^{\pi}\int_{0}^{(1-\cos{\phi})/2}\rho^{2}\sin{\phi}\,d\rho d\phi d\theta$.

2455   

Encontre a constante $a$ tal que $$\int_{0}^{1}\int_{0}^{4-a-x^{2}}\int_{a}^{4-x^{2}-y}\;dz dy dx=\frac{4}{15}.$$

2927   

Escreva a equação $z^{2}=x^{2}+y^{2}$ em coordenadas esféricas.

$\cos^2 \phi = \sin^2 \phi.$

2482   

Use a integral tripla para determinar o volume do sólido dado.

  1.  $x^{2}+y^{2}\leq 4$ e $x^{2}+y^{2}+z^{2}\leq 9.$

  2.  $x^{2}+4y^{2}+9z^{2}\leq 1.$

  3.  $\dfrac{x^{2}}{a^{2}}+\dfrac{y^{2}}{b^{2}}+\dfrac{z^{2}}{c^{2}}$,  $(a>0,\;b>0\;e\;c>0).$

  4.  $x^{2}+y^{2}\leq z \leq 4x+2y.$

  1.  $\left(36 - \dfrac{20\sqrt{5}}{3} \right)\pi.$

  2.  $\dfrac{2\pi}{9}.$

  3.  $\dfrac{4\pi abc}{3}.$

  4.  $\dfrac{25\pi}{4}$

2598   

Considere a integral tripla iterada $$\int_{-\sqrt{2}}^{\sqrt{2}}\int_{-\sqrt{2-x^2}}^{\sqrt{2-x^2}}\int_{x^2 + y^2}^{4-x^2-y^2} dz dy dx.$$

  1.  Transforme a integral utilizando coordenadas cilíndricas.

  2.  Calcule a integral.

  3.  Descreva o sólido cujo volume é dado por essa integral.

  1.  $\displaystyle \int_{0}^{2\pi}\int_{0}^{\sqrt{2}}\int_{ r^2}^{4-r^{2}} r dz dr d\theta.$

  2.  $4\pi.$

  3.  Região entre os parabolóides $z = x^2 + y^2$ e $z = 4 - x^2 - y^2$.

2537   

Suponha que o sólido tenha densidade constante $k$. Encontre os momentos de inércia para um cubo com comprimento do lado $L$ se um vértice está localizado na origem e três arestas estão nos eixos coordenados.

$\displaystyle I_{x} = I_{y} = I_{z} = \dfrac{2kL^5}{3}.$

2953   

Usando coordenadas esféricas, determine o volume da parte da bola $\rho\leq a$ que está entre os cones $\phi=\pi/6$ e $\phi=\pi/3.$

$\displaystyle \left( \sqrt{3} - 1 \right) \dfrac{\pi a^3}{3}.$

2431   

Calcule a integral tripla.

  1.  $\displaystyle\iiint\limits_{  E}(x^{2}+z^{2})\;dx dy dz$, onde $E$ é o cilindro $x^{2}+y^{2}\leq 1$ e $0\leq z \leq 1.$

  2.  $\displaystyle\iiint\limits_{  E}\;dx dy dz$, onde $E$ é o conjunto $x^{2}+y^{2}\leq z \leq 2x+2y-1.$

  1.  $\dfrac{7\pi}{12}.$

  2.  $\dfrac{\pi}{2}.$

2928   

Esboce o sólido descrito por $\rho \leq 2$, $0\leq \phi \leq \pi/2$ e $0\leq \theta \leq \pi/2.$


Como escrever o volume delimitado por x2 + y2 + z2 = 4 e x2 + y2 3z em coordenadas cartesianas

2971   

Mostre que

$$\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}\sqrt{x^{2}+y^{2}+z^{2}}\,e^{-(x^{2}+y^{2}+z^{2})}\,dxdydz=2\pi.$$

(A integral imprópria tripla é definida como o limite da integral tripla sobre uma esfera sólida quando o raio da esfera aumenta indefinidamente.)

Note que $$\begin{split}&\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}\sqrt{x^{2}+y^{2}+z^{2}}\,e^{-(x^{2}+y^{2}+z^{2})}\,dxdydz  \\&= \lim_{R \to \infty} \int_{0}^{2\pi}\int_{0}^{\pi}\int_{0}^{R} \rho e^{-\rho^2}\rho^2 \sin(\phi)\;d\rho d\phi d\theta.\end{split}$$

2925   

Mude o ponto $(1,\sqrt{3},2\sqrt{3})$ dado em coordenadas retangulares para esféricas.

$\displaystyle \left( 4, \dfrac{\pi}{3}, \dfrac{\pi}{6} \right).$

2962   

Usando coordenadas esféricas, determine o centroide e o momento de inércia em relação a um diâmetro de sua base do hemisfério sólido homogêneo de raio $a.$

Centróide: $\left(0,0,\dfrac{3a}{8} \right);$ momento de inércia: $\dfrac{4 K a^5 \pi}{15},$ onde $K$ é a densidade constante.

2535   

Ache o centro de massa de $E$, em que:

  1.  A densidade de um ponto $P$ de um sólido cúbico $E$ de aresta $a$ é diretamente proporcional ao quadrado da distância de $P$ a um vértice fixo do cubo.

  2.  $E$ é o tetraedro delimitado pelos planos coordenados e o plano  $2x+5y+z=10$ e a densidade em $P(x,y,z)$ é diretamente proporcional $\grave{a}$ distância do plano $xz$ a $P.$

  1.  $\displaystyle \left( \dfrac{7a}{12},\dfrac{7a}{12},\dfrac{7a}{12} \right).$

  2.  $\displaystyle \left( 1,\dfrac{4}{5},2 \right).$

2963   

O centróide de uma região $E$ é dado por

$$\overline{x}=\frac{1}{vol(E)}\int_{E}x\,dV,\;\;\;\; \overline{y}=\frac{1}{vol(E)}\int_{E}y\,dV\;\; \text{e}\;\; \overline{z}=\frac{1}{vol(E)}\int_{E}z\,dV.$$

Calcule o centróide da região dada em coordenadas esféricas por $0\leq \rho \leq 1$, $0\leq\phi \leq \pi/3$ e $0\leq \theta \leq 2\pi$ (observe que, devido à simetria da região, $\overline{x}$ e $\overline{y}$ se anulam, bastando calcular a terceira coordenada).

$\overline{z} = \dfrac{9}{16}.$

3052   

Esboce o sólido descrito pelas desigualdades $0 \leq r \leq 2$, $-\pi/2 \leq \theta \leq \pi/2$ e $0 \leq z \leq 1$.

Como escrever o volume delimitado por x2 + y2 + z2 = 4 e x2 + y2 3z em coordenadas cartesianas

3152   

Mostre que o determinante Jacobiano da mudança de coordenadas cartesianas para esféricas é $-\rho^2 \sin \varphi$.

2436   

Calcule a integral tripla.

  1. $\displaystyle\iiint\limits_{  E}\cos{z} \; dx dy dz$, onde $E$ é o conjunto $0\leq x \leq \dfrac{\pi}{2}$, $0\leq y \leq \dfrac{\pi}{2}$ e $x-y\leq z \leq x+y.$

  2. $\displaystyle\iiint\limits_{  E}(y-x)\;dx dy dz$, onde $E$ é o conjunto $4\leq x+y\leq 8$, $\dfrac{1}{x}\leq y\leq \dfrac{2}{x}$,  $y> x$ e $0\leq z \leq \dfrac{\sqrt[3]{xy}}{\sqrt{x+y}}.$

  1.  $2.$

  2.  $3 - 6\sqrt[3]{2} - 2\sqrt{2} + 6 \sqrt[6]{2^5}.$

2948   

Calcule utilizando coordenadas esféricas. $\displaystyle\iiint\limits_{B}z\,dxdydz$, onde $B$ é o conjunto $z\geq \sqrt{x^{2}+y^{2}}$ e $x^{2}+y^{2}+z^{2}\leq 1.$

2942   

Calcule utilizando coordenadas esféricas. $\displaystyle\iiint\limits_{H}(9-x^{2}-y^{2})\,dV$, onde $H$ é o hemisfério sólido $x^{2}+y^{2}+z^{2}\leq 9$ e $z\geq 0.$

2916   

Calcule utilizando coordenadas esféricas. $\displaystyle\iiint\limits_{B} z \,dxdydz$, onde $B$ é o conjunto $1\leq x^{2}+y^{2}+z^{2}\leq 4$ e $z\geq 0.$


Usando coordenadas esféricas, o sólido pode ser descrito por

$$B = \left\{(\rho, \theta, \phi): 1 \leq \rho \leq 2, 0 \leq \theta \leq 2\pi \mbox{ e } 0 \leq \phi \leq \frac{\pi}{2}\right\}.$$

Lembre que o Jacobiano dessa transformação é $\rho^2 \sin{\phi}$. Assim, obtemos

\begin{array}{rcl}\displaystyle\iiint\limits_{B} z \,dxdydz & = & \displaystyle\int_{0}^{2\pi}\int_{0}^{\frac{\pi}{2}}\int_{1}^{2}(\rho \cos{\phi})(\rho^2 \sin{\phi})\,d\rho d\phi d\theta \\  & = & \displaystyle\int_{0}^{2\pi}\int_{0}^{\frac{\pi}{2}}\left.\left(\frac{\rho^4}{4} \frac{\sin{2\phi}}{2}\right|_{\rho=1}^{\rho=2}\right)\, d\phi d\theta \\  & = & \displaystyle\int_{0}^{2\pi}\left.\left(\frac{(16-1)}{8} \frac{(-\cos{2\phi)}}{2}\right|_{\phi=0}^{\rho=\frac{\pi}{2}}\right)\, d\theta \\  & = & \left.-\frac{15}{16}(-1-1) \theta \right|_{\theta=0}^{\theta=2\pi} = \frac{15\pi}{4}.    \end{array}

2428   

Calcule a integral tripla.

  1.  $\displaystyle\iiint\limits_{  E}z\,dV$, onde $E$ é limitado pelo cilindro $y^{2}+z^{2}=9$ e pelos planos $x=0$, $y=3x$ e $z=0$ no primeiro octante.

  2.  $\displaystyle\iiint\limits_{  E}xyz\;dx dy dz$, onde $E$ é o paralelepípedo $0\leq x\leq 2$, $0\leq y\leq 1$, e $1\leq z\leq 2.$

  1.  $\dfrac{27}{8}.$

  2.  $\dfrac{3}{2}.$

2959   

Usando coordenadas esféricas, determine o volume do sólido que está acima do cone $\phi=\pi/3$ e abaixo da esfera $\rho=4\cos{\phi}.$

3049   

 Calcule a integral tripla $\int\int\int\limits_{T}x^{2}dV$, 

onde $T$ é o tetraedro sólido com vértices $(0,0,0)$, $(1,0,0)$, $(0,1,0)$ e $(0,0,1).$


Para resolvermos a integral tripla, vamos desenhar dois diagramas: um da região sólida $T$ (Figura 1) e o outro a sua projeção $D$ no plano $xy$ (Figura 2). 

Como escrever o volume delimitado por x2 + y2 + z2 = 4 e x2 + y2 3z em coordenadas cartesianas

A fronteira inferior do tetraedro $T$ é o plano $z=0$ e a superior é o plano $x+y+z=1$ (ou $z=1-x-y$). 

Notemos que os planos $x+y+z=1$ e $z=0$ se interceptam na reta $x+y=1$ (ou $y=1-x$) no plano $xy.$ 

Logo a projeção de $T$ é a região triangular da Figura 2 e temos 

$$T=\{(x,y,z)|\,0\leq x \leq 1,\, 0\leq y \leq 1-x,\, 0\leq z \leq 1-x-y\}.$$

Assim, 

$$\int\int\int\limits_{T}x^{2}\,dV=\int_{0}^{1}\int_{0}^{1-x}\int_{0}^{1-x-z}x^{2}\,dz\,dy\,dx=\int_{0}^{1}\int_{0}^{1-x}x^{2}z\bigg|_{0}^{1-x-y}\,dy\,dx$$

$$=\int_{0}^{1}\int_{0}^{1-x}x^{2}(1-x-y)\,dy\,dx=\int_{0}^{1}\int_{0}^{1-x}(x^{2}-x^{3}-x^{2}y)\,dy\,dx$$

$$=\int_{0}^{1}\bigg(x^{2}y-x^{3}y-x^{2}\frac{y^{2}}{2}\bigg)\bigg|_{0}^{1-x}\,dx=\int_{0}^{1}\bigg(x^{2}(1-x)-x^{3}(1-x)-\frac{x^{2}}{2}(1-x)^{2}\bigg)dx$$

$$=\int_{0}^{1}\bigg(\frac{x^{2}}{2}-x^{3}+\frac{x^{4}}{2}\bigg)\,dx =\bigg[\frac{1}{2}\cdot\frac{x^{3}}{3}-\frac{x^{4}}{4}+\frac{1}{2}\cdot\frac{x^{5}}{5}\bigg]\bigg|_{0}^{1}=\frac{1}{60}.$$

2434   

Calcule a integral tripla.

  1.  $\displaystyle\iiint\limits_{  E}e^{x^{2}}\;dx dy dz$, onde $E$ é o conjunto $0\leq x \leq 1$, $0\leq y \leq x$ e $0\leq z \leq 1.$

  2.  $\displaystyle\iiint\limits_{  E}x\;dx dy dz$, onde $E$ é o conjunto $x^{2}\leq y\leq x$, $0\leq z\leq x+y.$

  1.  $\dfrac{e - 1}{2}.$

  2.  $\dfrac{11}{120}.$

3115   

Seja \(G\) a caixa retangular definida pelas desigualdades \(a\leq x\leq b\),  \(c\leq y\leq d\) e \(k\leq z\leq l\). Mostre que \[\iiint\limits_G f(x)g(y)h(z)\,dV = \left[\int_a^bf(x)\,dx\right]\left[\int_c^dg(y)\,dy\right]\left[\int_k^lh(z)\,dz\right].\]

2955   

Usando coordenadas esféricas, determine o volume da porção da esfera sólida $\rho \leq a$ que está entre os cones $\phi=\pi/3$ e $\phi=2\pi/3.$

2534   

Determine a massa e o centro de massa do cubo dado por $0\leq x\leq a$, $0\leq y\leq a$, $0\leq z\leq a$ e com função densidade:

  1.  $\rho(x,y,z)=x^{2}+y^{2}+z^{2}.$

  2.  $\rho(x,y,z)=x+y+z.$

  1.  Massa: $a^5;$ centro de massa: $\displaystyle \left(\frac{7a}{12},\frac{7a}{12},\frac{7a}{12} \right).$

  2.  Massa: $\dfrac{3a^4}{2};$ centro de massa: $\displaystyle \left(\frac{5a}{9},\frac{5a}{9},\frac{5a}{9} \right).$

2601   

Seja $E$ a região limitada pelos paraboloides $z = x^2 + y^2$ e $z = 36 - 3x^2 - 3y^2$.

  1.  Ache o volume da região $E$.

  2.  Encontre o centroide de $E$ (centro de massa no caso em que a densidade é constante).

2586   

Determine o volume do sólido que está acima do plano $xy$, abaixo do paraboloide $z = x^2 + y^2$ e que se encontra dentro do cilindro $x^2 + y^2 = 2x$ e fora do cilindro $x^2 + y^2 = 1.$


Temos que $0\leq z\leq x^{2}+y^{2}$. Como o sólido se encontra dentro do cilindro $x^{2}+y^{2}=2x$ e fora do cilindro $x^{2}+y^{2}=1$, devemos fazer a interseção desses dois cilindros, isto é, $$\left\{\begin{array}{cc} x^{2}+y^{2}=2x\\ x^{2}+y^{2}=1\\ \end{array} \right.\Rightarrow 2x=1\Leftrightarrow x=\frac{1}{2}$$ Em coordenadas cilíndricas temos que \begin{eqnarray*} x&=&r\cos \theta\\ y&=&r\sin \theta\\ z&=&z\\ dz\,dy\,dx&=&r\,dz\,dr\,d\theta \end{eqnarray*} Da equação $x^{2}+y^{2}=1$ temos que $$r^{2}=1\Longrightarrow r=\pm 1,$$ como devemos ter $r\geq 0$, então nesse caso $r=1.$ Da equação $x^{2}+y^{2}=2x$ temos que $$r^{2}=2r\,\cos \theta \Rightarrow r=2\cos \theta.$$  Agora, sendo $x=\frac{1}{2}$ e $r=1$ temos que $$\cos \theta=\frac{1}{2}\Rightarrow \theta=\pm \frac{\pi}{3}.$$ Assim, em coordenadas cilíndricas temos que o sólido $E$ é dado por $$E=\{(\theta,\,r,\,z)|\, -\frac{\pi}{3}\leq \theta \leq \frac{\pi}{3},\, 1\leq r\leq 2 \cos \theta,\,0\leq z\leq r^{2}\}.$$ Então, $$V=\iiint\limits_{  E}1\,dV= \int_{-\frac{\pi}{3}}^{\frac{\pi}{3}}\int_{1}^{2\cos \theta}\int_{0}^{r^{2}}1\,r\,dz\,dr\,d\theta= \int_{-\frac{\pi}{3}}^{\frac{\pi}{3}}\int_{1}^{2\cos \theta}zr\bigg|_{0}^{r}\,dr\,d\theta$$ $$=\int_{-\frac{\pi}{3}}^{\frac{\pi}{3}}\int_{1}^{2\cos \theta}r^{3}\,dr\,d\theta= \int_{-\frac{\pi}{3}}^{\frac{\pi}{3}}\frac{r^{4}}{4}\bigg|_{1}^{2\cos \theta}\,d\theta =\int_{-\frac{\pi}{3}}^{\frac{\pi}{3}}\bigg(4\cos^{4}\theta-\frac{1}{4}\bigg)\,d\theta$$ $$=4\int_{-\frac{\pi}{3}}^{\frac{\pi}{3}}\underbrace{\cos^{4}\theta}_{\mbox{função   par}}\,d\theta-\int_{-\frac{\pi}{3}}^{\frac{\pi}{3}}\underbrace{\frac{1}{4}}_{\mbox{função    par}}\,d\theta =8\int_{0}^{\frac{\pi}{3}}\cos^{4}\theta\,d\theta-2\int_{0}^{\frac{\pi}{3}}\frac{1}{4}\,d\theta$$ $$=8\bigg[\frac{3}{8}\theta+\frac{1}{4}\sin(2\theta)+\frac{1}{32}\sin(4\theta)\bigg]\bigg|_{0}^{\frac{\pi}{3}} -\bigg(\frac{1}{2}\theta\bigg)\bigg|_{0}^{\frac{\pi}{3}}$$ $$=8\bigg[\frac{3}{8}\cdot \frac{\pi}{3}+\frac{1}{4}\sin\bigg(\frac{2\pi}{3}\bigg)+\frac{1}{32}\sin\bigg(\frac{4\pi}{3}\bigg)\bigg]-\frac{1}{2}\cdot \frac{\pi}{3}$$ $$=\pi+\sqrt{3}-\frac{\sqrt{3}}{8}-\frac{\pi}{6}=\frac{5\pi}{6}+\frac{7\sqrt{3}}{8}.$$

2481   

Use a integral tripla para determinar o volume do sólido dado.

  1.  $0\leq x \leq 1$, $0\leq y \leq 1$ e $0\leq z \leq 5-x^{2}-3y^{2}.$

  2.  $0\leq x \leq 1$, $0\leq y \leq x^{2}$ e $0\leq z \leq x+y^{2}.$

  3. $x^{2}+y^{2}\leq z \leq 4.$

  4.  $x^{2}+4y^{2}\leq z \leq 1.$

  1.  $\dfrac{11}{3}.$

  2. $\dfrac{25}{84}.$

  3. $8\pi.$

  4.  $\dfrac{\pi}{4}.$

2930   

Calcule a integral em coordenadas esféricas. $\displaystyle\int_{0}^{\pi}\int_{0}^{\pi}\int_{0}^{2\,\sin{\phi}}\rho^{2}\sin{\phi}\,d\rho d\phi d\theta$.

2961   

Usando coordenadas esféricas, determine o volume do sólido que está dentro da esfera $x^{2}+y^{2}+z^{2}=4$, acima do plano $xy$ e abaixo do cone $z=\sqrt{x^{2}+y^{2}}.$

$\dfrac{8\sqrt{2}\pi}{3}.$

2597   

Seja $D$ a região limitada abaixo pelo plano $z=0$, acima pela esfera   $x^2+y^2+z^2=4$ e dos lados pelo cilindo $x^2+y^2=1$. Monte as integrais triplas em coordenadas cilíndricas que dão o volume de $D$ usando as ordens de integração a seguir.

  1.  $dzdrd\theta$

  2.  $drdzd\theta$

  3.  $d\theta dzdr$

  1.  $\displaystyle \int_{0}^{2\pi} \int_{0}^{1} \int_{0}^{\sqrt{4 - r^2}} r dz dr d\theta.$

  2.  $\displaystyle \int_{0}^{2\pi} \int_{0}^{\sqrt{3}} \int_{0}^{1} r  drdzd\theta +  \int_{0}^{2\pi} \int_{\sqrt{3}}^{2} \int_{0}^{\sqrt{4 - z^2}} r  drdzd\theta.$

  3.  $\displaystyle \int_{0}^{1} \int_{0}^{\sqrt{4 - r^2}} \int_{0}^{2\pi} r  d\theta dzdr.$

2429   

Calcule a integral tripla.

  1.  $\displaystyle\iiint\limits_{  E}x\;dx dy dz$, onde $E$ é o conjunto $0\leq x \leq 1$, $0\leq y \leq 1$ e \\ $x+y\leq z \leq x+y+1.$

  2.  $\displaystyle\iiint\limits_{  E}\sqrt{1-z^{2}}\;dx dy dz$, onde $E$ é o conjunto $0 \leq x \leq 1$, $0\leq z\leq 1$ e $0\leq y \leq z.$

  1.  $\dfrac{1}{2}.$

  2.  $\dfrac{1}{3}.$

2427   

Calcule a integral tripla.

  1.  $\displaystyle\iiint\limits_{  E} x^2 e^y\,dV$, onde $E$ é delimitado pelo cilindro parabólico $z=1-y^{2}$ e pelos planos $z=0$, $x=1$ e $x=-1.$

  2.  $\displaystyle\iiint\limits_{  E}x\,dV$, onde $E$ é limitado pelo paraboloide $x=4y^{2}+4z^{2}$ e  pelo plano $x=4.$

  1.  $\dfrac{8}{3e}.$

  2.  $\dfrac{16\pi}{3}.$

2422   

Calcule a integral iterada.

  1.  $\displaystyle\int_{0}^{1}\!\!\int_{0}^{z}\!\!\int_{0}^{x+z}6xz\;dy dx dz$

  2.  $\displaystyle\int_{0}^{3}\!\!\int_{0}^{1}\!\!\int_{0}^{\sqrt{1-z^{2}}}ze^{y}\;dx dz dy$

  3.  $\displaystyle\int_{0}^{\pi/2}\int_{0}^{y}\int_{0}^{x}\cos(x+y+z)\;dz dx dy$

  1.  $1.$

  2.  $\displaystyle \frac{e^3 - 1}{3}.$

  3.  $-\dfrac{1}{3}.$

2596   

 Uma casca cilíndrica tem $20$ cm de comprimento, com raio interno de 6 cm e raio externo de $7$ cm. Escreva desigualdades que descrevam a casca em um sistema de coordenadas adequado. Explique como você posicionou o sistema de coordenadas em relação à casca.

$6 \leq r \leq 7,$ $0 \leq \theta \leq 2\pi,$ $0 \leq z \leq 20.$

3054   

Esboce o sólido cujo volume é dado pela integral iterada.

$\displaystyle\int_{0}^{2}\int_{0}^{2-y}\int_{0}^{4-y^{2}}\;dx dz dy$

Como escrever o volume delimitado por x2 + y2 + z2 = 4 e x2 + y2 3z em coordenadas cartesianas

2536   

Calcule a massa do sólido $x+y+z\leq 1$, $x\geq 0$, $y\geq 0$ e $z\geq 0$, sendo a densidade dada por $\rho(x,y,z)=x+y.$

2946   

Calcule utilizando coordenadas esféricas. $\displaystyle\iiint\limits_{B}x\,dxdydz$, onde $B$ é o conjunto $\dfrac{x^{2}}{4}+\dfrac{y^{2}}{9}+z^{2}\leq 1$ e $x\geq 0.$

3119   

Use coordenadas esféricas para encontrar o volume do sólido: contido no interior do cone \(\phi=\pi/4\), entre as esferas \(\rho=1\) e \(\rho=2\).

2454   

Calcule as integrais mudando a ordem de integração de maneira apropriada.

  1.  $\displaystyle\int_{0}^{4}\int_{0}^{1}\int_{2y}^{2}\dfrac{4\;\cos(x^{2})}{2\sqrt{z}}\;dx dy dz$

  2.    $\displaystyle\int_{0}^{1}\int_{0}^{1}\int_{x^{2}}^{1}12xze^{zy^{2}}\;dy dx dz$

  3.  $\displaystyle\int_{0}^{1}\int_{\sqrt[3]{z}}^{1}\int_{0}^{\ln 3}\dfrac{\pi e^{2x}\;\sin(\pi y^{2})}{y^{2}}\;dx dy dz$

  1.  $2 \sin(4).$

  2.  $3e - 6.$

  3.  $4.$

2426   

Calcule a integral tripla.

  1.  $\displaystyle\iiint\limits_{  E}2x\,dV$, onde $E=\{(x,y,z)|\;0\leq y\leq 2,\,0\leq x\leq \sqrt{4-y^{2}},\;\\ 0\leq z\leq y\}.$

  2.  $\displaystyle\iiint\limits_{  E}6xy\,dV$, onde $E$ está abaixo do plano $z=1+x+y$ e acima da região do plano $xy$ limitada pelas curvas $y=\sqrt{x}$, $y=0$ e $x=1.$

2933   

Calcule a integral em coordenadas esféricas. $\displaystyle\int_{0}^{3\pi/2}\int_{0}^{\pi}\int_{0}^{1}5\rho^{3}\sin^{3}{\phi}\,d\rho d\phi d\theta$.

2485   

Use a integral tripla para determinar o volume do sólido dado.

  1.  O tetraedro limitado pelos planos coordenados e o plano $2x+y+z=4.$

  2.  O sólido limitado pelo paraboloide $x=y^{2}+z^{2}$ e pelo plano $x=16.$

  3.  O sólido delimitado pelo cilindro $x=y^{2}$ e pelos planos $z=0$ e $x+z=1$.

  1.  $\dfrac{16}{3}.$

  2.  $128\pi.$

  3.  $\dfrac{8}{15}.$

2966   

Dentre as coordenadas cilíndricas ou esféricas, utilize a que lhe parecer mais apropriada para determinaretermine o volume da região limitada abaixo pelo plano $z=0$, lateralmente pelo cilindro $x^{2}+y^{2}=1$ e acima pelo paraboloide $z=x^{2}+y^{2}$.

2944   

Calcule utilizando coordenadas esféricas. $\displaystyle\iiint\limits_{E}xyz\,dV$, onde $E$ está entre as esferas $\rho=2$ e $\rho=4$ e acima do cone $\phi=\pi/3.$

2952   

Seja $E$ o sólido limitado pelos dois planos $z=1$ e $z=2$ e lateralmente pelo cone $z=\sqrt{x^{2}+y^{2}}$. Expresse o volume de $E$ como integral tripla em coordenadas esféricas (não é necessário calcular a integral).

$\displaystyle \int_{0}^{2\pi} \int_{0}^{\pi/4} \int_{\sec(\phi)}^{2\sec(\phi)} \rho^{2}\sin(\phi)\;d\rho d\phi d\theta.$

2587   

Calcule a massa do cilindro $x^{2}+y^{2}\leq 4$ e $0\leq z \leq 2$, sabendo que a densidade no ponto $(x,y,z)$ é o dobro da distância do ponto ao plano $z=0.$

2600   

Calcule as seguintes integrais triplas.

  1.  $\displaystyle\iiint\limits_{  E}  x^2 \, dV$, em que $E$ é o sólido que está dentro do cilindro $x^2 + y^2 = 1$, acima do plano $z = 0$ e abaixo do cone $z^2 = 4x^2 + 4y^2$.

  2.  $\displaystyle\iiint\limits_{  E}   xyz \, dV,$ em que $E$ é o sólido limitado pelos paraboloides $z = x^2 + y^2$, $z = 8 - x^2 - y^2$.

  3.  $\displaystyle\int_{-2}^2\int_{-\sqrt{4 - y^2}}^{\sqrt{4 - y^2}}\int_{\sqrt{x^2 + y^2}}^2 xz \, dz dx dy$

  1.  $\dfrac{2\pi}{5}$.

  2.  $0.$

  3.  $0.$

3055   

 Faça o esboço do sólido cujo volume é dado pela integral e calcule essa integral.

$\displaystyle \int_0^4 \int_0^{2\pi}\int_r^4 r \, dz d\theta dr$

Como escrever o volume delimitado por x2 + y2 + z2 = 4 e x2 + y2 3z em coordenadas cartesianas

2967   

Dentre as coordenadas cilíndricas ou esféricas, utilize a que lhe parecer mais apropriada para determinaretermine o volume da região limitada acima pelo paraboloide  $z=5-x^{2}-y^{2}$ e abaixo pelo paraboloide $z=4x^{2}+4y^{2}.$

2968   

Calcule a integral, transformando para coordenadas esféricas. $\displaystyle\int_{0}^{1}\int_{0}^{\sqrt{1-x^{2}}}\int_{\sqrt{x^{2}+y^{2}}}^{\sqrt{2-x^{2}-y^{2}}}xy\,dzdydx$.

$\dfrac{(4\sqrt{2} - 5)}{15}.$