Assim sendo marque a alternativa na qual o tipo de energia não corresponde ao trabalho realizado

Energia é uma grandeza física que se conserva, isto é, a quantidade total de energia nunca muda. Em termos diferentes, entende-se que energia é a capacidade de realizar trabalho. Existem diversas formas de energia intercambiáveis entre si, ou seja, que podem transformar-se umas nas outras. Apesar disso, quando transformada, a energia pode sofrer degradações em razão da entropia, tornando-se menos útil a cada transformação.

No âmbito da física no Ensino Médio, algumas formas de energia são mais estudadas que outras, como:

Veja também: Ondas eletromagnéticas - definição, fórmulas e principais características

O que é energia para a física?

O significado de energia para a física é bastante abstrato: trata-se de uma quantidade que sempre é conservada, ou seja, que nunca muda, independentemente de qual seja o fenômeno estudado.

Para que um corpo possa realizar trabalho ou, ainda, mudar de temperatura, é preciso que algum corpo transfira parte de sua própria energia para ele. Essa energia transferida entre corpos pode sofrer transformações, e, por isso, pode ser expressa de muitas formas: potencial, cinética, térmica, elétrica, química, nuclear e outras.

De acordo com o SI, a unidade de medida da energia é joule (J). Por definição, 1 joule é a quantidade de energia que precisa ser transferida para que um objeto mova-se um metro contra a ação de uma força externa de 1 N. Além do joule, existem outras unidades de medida de energia, como a caloria.

A caloria é a energia necessária para que, em condições normais de pressão (1 atm), 1 g de água sofra um aquecimento de 1 ºC. A relação quantitativa entre as unidades joule e caloria foi aferida, pela primeira vez, pelo físico James Prescott Joule (1818-1889). De acordo com as descobertas de Joule, a equivalência mecânica do calor é tal que 1 joule equivale a 4,1 cal.

Como mencionado, um corpo dotado de energia é capaz de realizar trabalho, isto é, tem a capacidade de produzir movimento contra a ação de alguma força externa. Um exemplo disso é quando nos movemos contra a ação da força da gravidade — ao fazê-lo, adquirimos energia potencial gravitacional. Essa energia adquirida, entretanto, não foi criada do nada: ela foi transformada, já que, para movermo-nos contra a gravidade, nosso corpo consumiu certa quantidade de energia no processo. Entenda, a seguir, qual é a relação entre o trabalho e a energia.

Formas de energia

Existem muitas formas de energia, por isso, neste tópico listaremos as mais importantes e descreveremos suas principais características, confira:

  • Energia cinética: todo corpo que se move é dotado de energia cinética. Essa forma de energia depende do quadrado da velocidade com que o corpo move-se e é proporcional à sua massa.

  • Energia mecânica: é definida como a soma da energia cinética com todas as formas de energia potencial de um sistema físico. Quando não há forças dissipativas, a energia mecânica é conservada.

  • Energia potencial gravitacional: quando um corpo está posicionado a alguma altura em relação ao solo, ele apresenta energia potencial gravitacional. Essa forma de energia está relacionada à massa, à gravidade e à altura do corpo em relação ao chão.

A energia pode expressar-se de diferentes formas.
  • Energia potencial elástica: todo corpo que tende a retornar ao seu formato original após ter sido deformado apresenta uma quantidade de energia potencial elástica. Essa energia depende do quadrado da deformação do corpo.

  • Energia elétrica: é o nome popular usado para designar a energia potencial elétrica. A atração entre cargas dá origem a ela. Essa energia depende do produto entre as cargas e é inversamente proporcional à distância que as separa.

  • Energia térmica: é a soma da energia cinética das partículas de um corpo. Essa energia é diretamente relacionada à temperatura absoluta do corpo, medida em kelvin. Além disso, a transferência de energia térmica entre corpos é chamada calor.

  • Energia nuclear: tem origem nas forças atrativas que mantêm o núcleo atômico coeso. Quando o núcleo dos átomos é desintegrado, ele emite energia em forma de radiação corpuscular e ondulatória.

Caso tenha maior curiosidade sobre o tema deste tópico, leia nosso texto: Formas de energia.

Relação entre trabalho e energia

Trabalho e energia são grandezas de mesma dimensão, ou seja, ambas são medidas em joules. O trabalho pode ser calculado pelo produto interno entre os vetores força e deslocamento. Portanto, a componente da força que é paralela à direção da distância percorrida pelo corpo contribui para a realização do trabalho, enquanto a componente perpendicular não promove qualquer realização de trabalho.

Em vermelho, vemos a projeção da força sobre a distância, que equivale ao trabalho realizado.

Em outras palavras, a parte da força que aponta na direção do deslocamento do corpo promove a transferência de energia para esse corpo. A figura a seguir traz a fórmula usada para calcular o trabalho realizado pela aplicação de uma força, confira:

F – força (N)

d – distância (m)

θ – ângulo entre força e trabalho (º)

Além da definição anteriormente exposta, sabemos que a realização de trabalho sobre um corpo promove uma variação de energia cinética. Essa variação é determinada pelo teorema do trabalho e da energia cinética, mostrado a seguir:

ECF e Eci – Energias cinética final e inicial

De acordo com esse teorema, a realização de um trabalho equivale à mudança da energia cinética, calculada pela diferença entre a energia cinética final e inicial.

Veja também: Corrente elétrica – como calculá-la e quais são suas principais propriedades

Conservação da energia

Como foi dito, a energia é uma grandeza que é conservada, ou seja, a quantidade total de energia em um sistema fechado é mantida constante, no entanto, também é verdade que a energia sofre transformações e passa a expressar-se de outras formas.

Imagine um sistema em que um skate é colocado para oscilar em uma pista de formato côncavo. Com o passar do tempo, o movimento do skate cessará, já que toda a energia cinética e potencial gravitacional associada a ele é gradativamente convertida em energia térmica, graças à ação das forças de atrito entre os rolamentos e também entre as rodas do skate e o chão.

Apesar de a energia mecânica do skate ter sido reduzida, a energia total associada a ele ainda foi mantida constante: se somássemos toda a quantidade de energia térmica produzida durante a oscilação dele, descobriríamos que não ocorre “perda de energia”.

Apesar de não ter ocorrido perda, dizemos que a energia mecânica que foi transformada em energia térmica trata-se de uma energia dissipada, mas dizemos isso porque, depois de ter sido transformada em energia térmica, a energia mecânica não poderá ser revertida para sua natureza original, pelo menos não integralmente. É como se a energia tivesse perdido qualidade e agora não fosse tão útil quanto antes. O fenômeno que explica a degradação da energia é conhecido como entropia.

Graças ao fenômeno da entropia, descrito pela 2ª lei da termodinâmica, não é possível que qualquer sistema físico opere por tempo indefinido. De acordo com essa premissa, nenhuma máquina pode obter um rendimento de 100%. Em outras palavras, o moto-contínuo, também conhecido como motor perpétuo, não existe. 

Não existe uma definição do que é energia, mas sabemos que a sua existência possibilita a execução de trabalho. A energia armazenada nos alimentos, por exemplo, faz com que os órgãos do corpo de uma pessoa funcionem corretamente. Os combustíveis fazem com que os veículos automotores se locomovam. Da mesma forma, a energia elétrica produzida pela bateria faz com que os elétrons dos fios condutores de energia se locomovam. Ao falar de energia é de extrema importância ressaltar o Princípio de Conservação da Energia. Princípio este que, segundo Lavoisier, diz: “Na natureza nada se perde, nada se cria, tudo se transforma”.

De forma a exemplificar conversões de energia de um modo geral, consideremos uma mola relaxada (figura 1), ou seja, uma mola que não está esticada. Veja:

Para comprimir a mola é necessário um gasto de energia. Assim, aplica-se uma força em uma de suas extremidades, de forma que a mesma se contraia. Dizemos que ao se aplicar a força sobre a mola há a realização de um trabalho. Este trabalho corresponde à energia transferida da pessoa para a mola. A figura 2 representa a mola já comprimida e com uma trava no carrinho, impedindo que o mesmo se liberte. A mola comprimida armazena energia. Essa energia, porém, só pode ser manifestada ao se retirar a trava do carrinho. A energia armazenada na mola é denominada de Energia Potencial Elástica. Potencial porque pode se manifestar e elástica porque está em um corpo elástico deformado. Agora, observando a figura 3, percebemos que o carrinho se libertou. Ao ser retirada a trava, a energia potencial que estava armazenada na mola se manifestou, fazendo com que o carrinho adquirisse movimento. Novamente temos a realização de trabalho. Agora esse trabalho corresponde à energia transferida da mola para o carrinho. A energia que o carrinho adquiriu é denominada de Energia Cinética.

Energia Cinética: é a energia que está relacionada ao movimento dos corpos.

Energia Potencial (gravitacional, elástica, elétrica, etc.): é a energia que um corpo possui em relação à posição particular que ele ocupa.

Na ausência de atrito, a energia mecânica total de um sistema se conserva, havendo apenas a transformação de energia potencial em energia cinética e vice-versa. Veja:

Emec= Ec + Ep

É de grande importância deixar bem claro que o trabalho e as formas de energia são grandezas escalares.

Trabalho de uma força

Trabalho é a medida da energia que é transferida para um corpo, em razão da aplicação de uma força ao longo de um deslocamento. Em Física, trabalho é normalmente representado por W(que vem do inglês work) ou mais usadamente a letra grega tau

.

Para calcular o trabalho de uma força é importante ressaltar que ele pode ser:

Trabalho de uma força constante e paralela ao deslocamento: é calculado quando se tem a força sendo aplicada no mesmo sentido do deslocamento. Pode ser calculado da seguinte forma:

Não pare agora... Tem mais depois da publicidade ;)

Como o ângulo entre a força e o deslocamente é zero faz com que o cosseno deste ângulo seja igual a 1, tornando a expressão equivalente à:

Onde D é o deslocamento sofrido pelo corpo.

Trabalho de uma força constante e não paralela ao deslocamento:


Quando temos a aplicação da força constante e não paralela, como no esquema acima, calculamos o trabalho da seguinte forma:

 

Onde ? é o ângulo formado entre a força e o deslocamento sofrido pelo corpo.

No SI (Sistema Internacional de Unidades) o trabalho é dado em joule, que é representado pela letra (J) e a força é dada em newton (N). Essa unidade é uma homenagem ao físico britânico James Prescott Joule. No sistema CGS, a unidade de trabalho é o erg= dina x centímetro.

Por Marco Aurélio da Silva
Equipe Brasil Escola

Postingan terbaru

LIHAT SEMUA